# A MARINE SURVEY OF THE OBYAN-NAFTAN REEF AREA, Saipan, Mariana Islands

by

Richard H. Randall, Shelly D. Rogers, Elburn E. Irish, Susanne C. Wilkins, Barry D. Smith and Steven S. Amesbury

**Final Report** 

Submitted to

Office of Coastal Resources Management

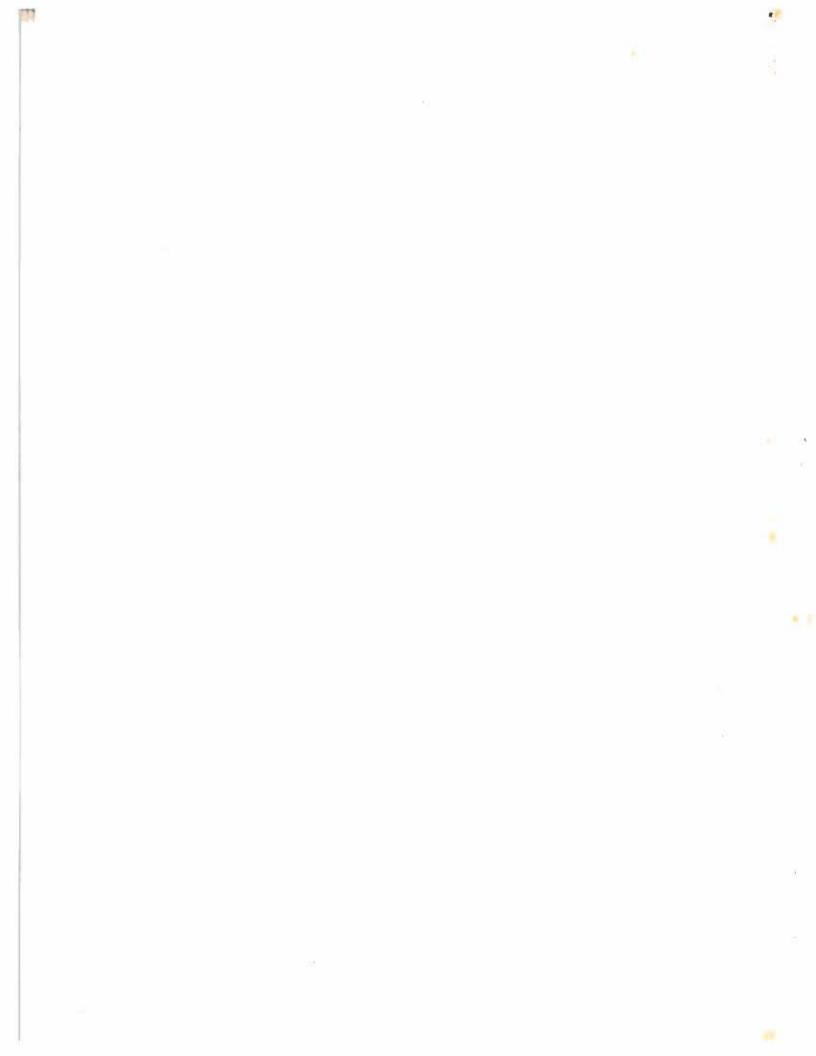
Commonwealth of the Northern Mariana Islands

# **UNIVERSITY OF GUAM MARINE LABORATORY**

**Technical Report No. 90** 

May 1988

•


3.5 1

£1

# TABLE OF CONTENTS

|                                                                                    | <u>Page</u> |
|------------------------------------------------------------------------------------|-------------|
| Introduction and Project Narrative<br>by Richard H. Randall                        | 1           |
| Currents and Substrate Characterization<br>by Shelly D. Rogers and Elburn E. Irish | 6           |
| A Quantitative Assessment of Marine Plants<br>by Susanne C. Wilkins                | 16          |
| Corals and Description of the Study Area<br>by Richard H. Randall                  | 22          |
| Conspicuous Epibenthic Macroinvertebrates<br>by Barry D. Smith                     | 38          |
| Fishes<br>by Steven S. Amesbury                                                    | 48          |
| Acknowledgements                                                                   | 56          |

ii



## INTRODUCTION AND PROJECT NARRATIVE

## by

# **Richard H. Randall**

## Introduction

Because of anticipated development along the southern coastal region of Saipan, the Coastal Resources Management (CRM) Office, Commonwealth of the Northern Marianas, requested assistance from the University of Guam Marine Laboratory in obtaining a baseline marine assessment of the shallow reef platform and upper reef front slope between Puntan Obyan and Puntan Naftan. Data obtained from this assessment will be used by CRM to make sound coastal management plans and regulatory decisions for the Obyan-Naftan coastal region.

A proposal to conduct a marine assessment along the Obyan-Naftan coastal region was submitted to CRM on April 30, 1987, and an agreement between the CRM and the University of Guam Marine Laboratory to conduct such an assessment was signed on August 6, 1987 (CNMI Contract No. CO - 18489). Field work for the assessment was conducted December 10-16, 1987.

## **Project Description**

This study consists of a limited marine assessment of the shallow reefflat platform and adjacent upper reef front slope habitats located along the southern Saipan coast between Puntan Obyan and Puntan Naftan. The overall study area is shown in Figures 1 and 2. Within this study area a quantitative assessment of major marine organisms was conducted, and the general surface current patterns and substrate characteristics were determined.

The study area was quantitatively assessed along five transects (A-E) as shown in Figures 1 and 2. Transects A-E were run perpendicular from the shoreline across the reef flat platform to the reef margin. Seaward of Transects A-D, assessments were conducted on the reef front slope along 50meter transects established by following the 6- to 8-meter submarine contour. The distribution and community structure of macroalgae, seagrasses, reefbuilding corals, fishes, macroinvertebrates other than corals, general surface current patterns, and substrate characteristics were analyzed along the five transects as shown in Figures 1 and 2.

Scope of Work

### A. Community Structure

1. Corals:

Coral (scleractinian, hydrozoan, coenothecalian, stoloniferan, and alcyonacean species) communities were assessed along the transects by using the point-centered (also called the point-quarter)

technique as described by Randall et al. (1987), and by making a general reconnaissance outside the general transect areas. From these data the distribution and community structure (colony size distribution, density, frequency, and coverage) of the corals were determined.

2. Algae and Seagrasses:

Benthic macroscopic algal and seagrass communities were assessed along the transects by using the point-quadrat method described by Randall et al. (1987), and by making a general reconnaissance outside the general transect areas. From these data the distribution and community structure (coverage and frequency of occurrence) of the benthic algae and seagrasses were determined.

3. Macroinvertebrates:

Macroinvertebrates (other than corals) consisting principally of molluscs, echinoderms, and crustaceans were assessed along the transects by using the line-quadrat method described by Randall et al. (1987), and by making a general reconnaissance outside the general transect areas. From these data the distribution and density of benthic macroinvertebrates were determined.

4. Fishes:

Fish communities were assessed within ecological zones along the transects by using the method described by Randall et al. (1987), and by making a general reconnaissance outside the general transect areas. From these data, population densities of the various fish species and species richness of the fish communities within each ecological zone were determined.

## B. Currents and Substrate Characterization

1. Currents:

Current speed and direction were determined by using the dyeinjection technique described by Randall et al. (1987). These data were used to characterize and map the general current patterns at intervals along the transects.

2. Substrate Characterization:

Characterization of the substrate was determined by using the pointquadrat method described by Randall et al. (1987), and by making a general reconnaissance outside the general transect areas. These data were used to determine the distribution of unconsolidated surface deposits (limesand, gravel, rubble, and boulders) and consolidated reef rock at intervals along the twansects.

# Personnel

- A. University of Guam Marine Laboratory Faculty
  - 1. Richard H. Randall Principal Investigator Work Speciality - Coral assessment
  - Steven S. Amesbury Associate Investigator Work Speciality - Fish assessment
  - 3. Barry D. Smith Associate Investigator Work Speciality - Macroinvertebrates other than corals
- B. University of Guam Marine Laboratory Technical Staff
  - 1. Elburn E. Irish Associate Investigator Work Speciality - Currents and substrate characterization
  - 2. Susanne C. Wilkins Associate Investigator Work Speciality - Macroalgae and seagrasses
- C. University of Guam Marine Laboratory Graduate Assistant
  - Shelly D. Rogers Associate Investigator Work Speciality - Currents and substrate characterization

## Literature Cited

Randall, R. H., A. E. Davis, A. E. Edward, P. D. Gates, T. S. Potter, and S. C. Wilkins. 1987. A marine survey of the northern Tanapag reef platform, Saipan, Mariana Islands. Univ. Guam Mar. Lab., Tech. Rept. 87. 147 p.

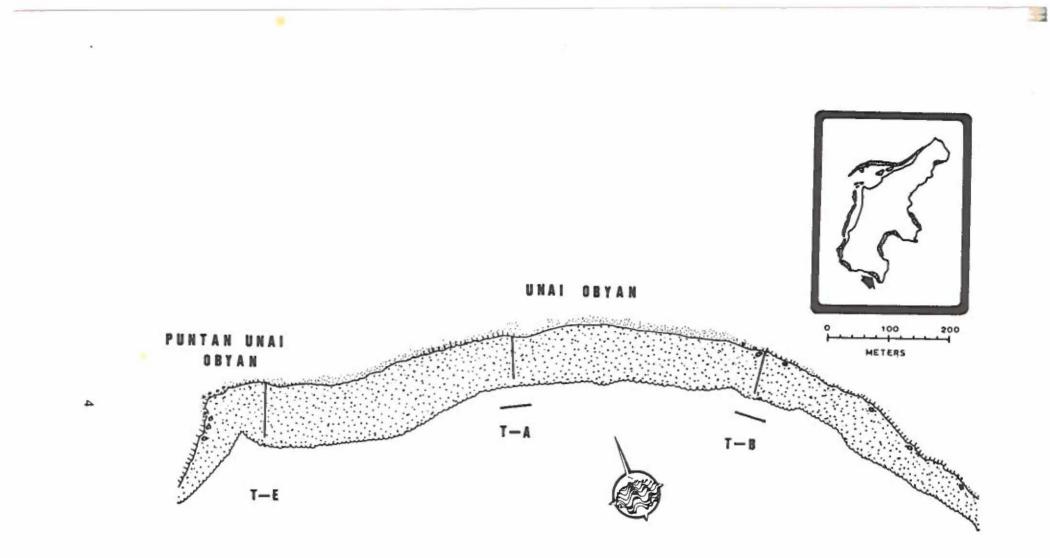



Figure 1. Map of the southern coastal region of Saipan showing the location of Transects A,B, and E. Shallow fringing reef platform areas and beach deposits are indicated by stippling seaward and landward of the shoreline respectively. Coastal exposures of limestone and beachrock are indicated by short lines drawn normal to the shoreline. Fig. modified from Eldredge and Randall, 1980.

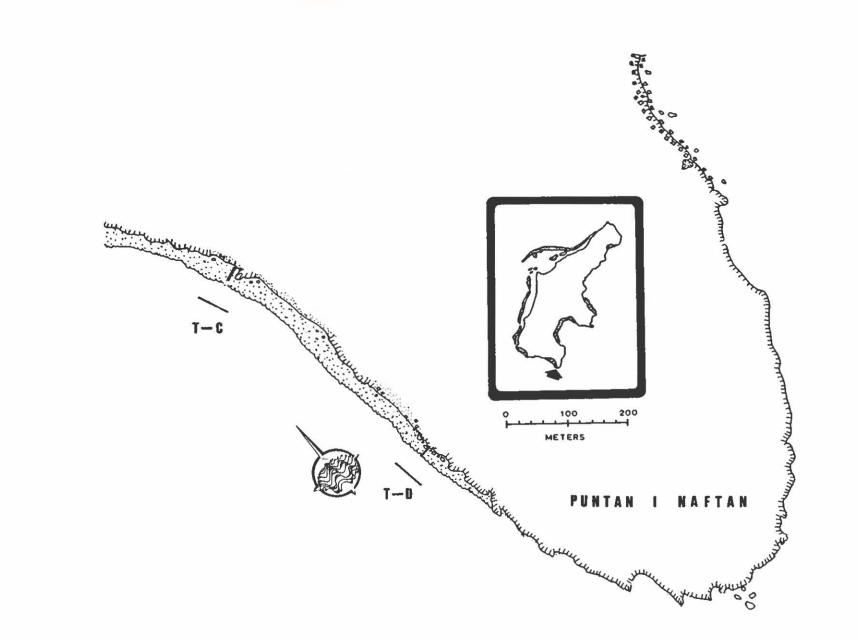



Figure 2. Map of the southern coastal region of Saipan showling the location of Transects C and D. Shallow fringing reef platform areas and beach deposits are indicated by stippling seaward and landward of the shoreline respectively. Coastal exposures of limestone and beachrock are indicated by short lines drawn normal to the shoreline. Fig. modified from Eldredge and Randall, 1980.

S

# CURRENTS AND SUBSTRATE CHARACTERIZATION

by

## Shelly D. Rogers and Elburn Irish

# Introduction

Current and substrate characterization data were generated for the reef platform and reef slope of Unai Obyan Bay, Saipan, on December 11-16, 1987. Data were taken at 20-meter intervals at along Transects A, B, and E and at 15-meter intervals along Transects C and D. The reef slope stations were located along the 8-meter contour. No data were recorded for the reef slope of Transect E. Figures 1 and 2 show the locations of all the stations.

## Currents

#### Current Analysis Methods

Flourescein dye was injected into the water at each station on the transect line. The time was recorded at the time of dye injection at each station in order to evaluate the rate of current measured in respect to prevailing tidal conditions. Dye injections were made just below the surface of the water in order to reduce the influence of wind-generated surface-water movement. In most cases dye patches were observed until a dominant directional component was established. At each injection station the distance the dye patch traveled, elapsed time for travel, and directional heading of dye patch movement were recorded.

## Water Movement Analysis and Discussion

Current speed and bearing, water depth, distance from shore, and tide stage data are given in Table 1 for each transect station. Current velocity vectors for each transect station are plotted on Figures 1 and 2.

All of Transect A, Stations 1 and 2 at Transect B, and Stations 2 and 3 at Transect C have easterly current directions. In comparison, all of Transect D, Stations 3 and 4 at Transect B, and Station 1 at Transect C have westerly current directions due to a channel in the reef flat leading seaward between Transects B and C.

On Transects A, C, and E the current direction ran inshore in a south southwest to north northeast pattern. Much of this was due to surf and swell action and direction. The speed of the current increased in conjunction with the distance from shore at all transect sites on the reef flat. Three readings at Transect B had no noticeable current direction, being closest to the seaward reef channel.

Currents at offshore transects on reef front slopes at Transects B, C, and D ran in an east southeast to west northwest direction with currents at Transects C and D moving at a faster speed than that of Transect B. The current at Transect A ran offshore in a northwest to southeast direction, but at a speed similar to that of Transect B.

## Substrate Characterization

## Substrate Characterization Methods

The substrate at each station was characterized by using a quadrat, rigged with eight intersecting cords which formed 16 equidistant points. The quadrat was tossed randomly within a 3-meter radius of each station. The substrate under each of the 16 points was assigned to one of eight classes (A-H) described in Table 2. A point was assigned as sand or gravel, only if the sand or gravel was greater then one centimeter in thickness.

The quadrat was thrown three times on each reef platform station, nine times on the reef slope of Transect A, and five times on the reef slopes of Transects B-D. The reef platform was divided into an inner reef platform and an outer reef platform. The inner reef platform was a deeper moat zone, while the outer reef platform was shallow to intertidal. Thus, there were three distinct reef zones: inner reef platform, outer reef platform, and reef slope. The points of each substrate class were summed together by reef zone. Percent cover for each zone was calculated by dividing the points of each substrate class by the total points recorded in the zone and multiplying by 100%.

#### Substrate Analysis

Table 2 shows the results of the substrate study. The inner reef platform consisted mostly of pavement and some cobble with a thin layer (usually less than 2 centimeters) of sand on top. Transects D and E had thicker layers of sand. Forams were abundant in the sand, except on Transect E. Few corals or fleshy algae were recorded in the zone. No coralline algae was recorded for any of the transects along the inner reef platform; however, a small amount was observed. Transect E was the only transect with a zone of large conspicuous coral heads. This zone was approximately five meters wide and was located at the seaward edge of the inner platform, 30 meters from shore.

The outer reef platform also consisted of mostly pavement and some cobble with a thin layer of sand. The amount of cobble varied greatly. Transect A had no cobble recorded while Transect E had 66% cobble. The cobble was formed of calcium carbonate chunks cemented together so that it was difficult to separate and lift as separate pieces. The sand layer was thinner and much less apparent than in the inner reef platform. Forams were still abundant in the sand. A few live corals and fleshy algae were recorded (less than four percent cover each). Coralline algae were common (twelve percent), especially <u>Halimeda</u> and <u>Amphiroa</u>.

The reef slope was predominantly pavement (85%). The cobble in this area was loose, unlike the outer reef platform. The amount of cobble on the reef slope seemed to increase toward the reef front. Data, however, were only recorded along the 8-meter contour. Transects A, B, and C contained between three and four percent live coral. Some calcareous algae, between three and four percent, were recorded in Transects A and B. Very little of any of the other substrate classes were noted.

| Transe     | ct A:       | December 11, 1987    |         |            |            |       |                                                                                                                |
|------------|-------------|----------------------|---------|------------|------------|-------|----------------------------------------------------------------------------------------------------------------|
|            |             | High Tide at 12:4    |         | 5          | Cime: S    | tart  | 14:15                                                                                                          |
|            |             | Low Tide at 18:24    | = 0.5 m |            | F          | inish | 14:45                                                                                                          |
| Sta.       | Dist. From  | Current Speed        | Depth   | Bearing    | Tide       |       |                                                                                                                |
| <u>no.</u> | Shore (m)   | (m/sec)              | (m)     | (deg)      | Stag       |       | An encounter of the second |
|            | 12          | 0.12                 | 0.00    | 000        | 200        |       |                                                                                                                |
| 1<br>1     | 13<br>13    | 0.13<br>0.15         | 0.88    | 090<br>080 | EBB<br>EBB |       |                                                                                                                |
| 1          | 13          | 0.21                 | 0.88    | 080        | EBB        |       |                                                                                                                |
|            |             |                      |         |            |            |       |                                                                                                                |
| 2          | 33          | 0.16                 | 0.93    | 050        | EBB        |       |                                                                                                                |
| 2          | 33          | 0.22                 | 0.93    | 082        | EBB        |       |                                                                                                                |
| 2          | 33          | 0.18                 | 0.93    | 023        | EBB        |       |                                                                                                                |
| 3          | - 53        | 0.50                 | 0.42    | 033        | EBB        |       |                                                                                                                |
| 3          | 53          | 0.30                 | 0.42    | 040        | EBB        |       |                                                                                                                |
| 3          | 53          | 0.30                 | 0.42    | 036        | RBB        |       |                                                                                                                |
| 4          | 73          | 0.63                 | 0.42    | 018        | EBB        |       |                                                                                                                |
| 4          | 73          | 0.40                 | 0.42    | 019        | EBB        |       |                                                                                                                |
| 4          | 73          | 0.37                 | 0.42    | 050        | EBB        |       |                                                                                                                |
|            | December    | 14, 1987             |         |            |            |       |                                                                                                                |
|            |             | at $07:11 = 0.2$     | -       | Time:      | Start      | 10:3  | 0                                                                                                              |
|            |             | e at $14:25 = 0.7$   |         |            | Finish     |       |                                                                                                                |
|            | 150         | 0.00                 |         | 001        | ET O       | 00    |                                                                                                                |
| 5          | 150         | 0.09                 | 8       | 221        | FLO        |       |                                                                                                                |
| 5<br>5     | 150<br>150  | 0.13<br>0.11         | 8<br>8  | 150<br>138 | FLO<br>FLO |       |                                                                                                                |
|            |             |                      |         |            |            |       |                                                                                                                |
| Transe     | ct B: Decem | ber 11, 1987         |         |            |            |       |                                                                                                                |
|            |             | Tide at $12:46 = 0$  | .7 m    | Time:      | Start      | 15:45 |                                                                                                                |
|            |             | ide at $18:24 = 0$ . |         |            | Finish     | 16:15 |                                                                                                                |
|            |             |                      |         |            |            |       |                                                                                                                |
| Sta.       | Dist. From  | Current Speed        | Depth   | Bearing    | Tide       |       |                                                                                                                |
| no.        | Shore (m)   | (m/sec)              | (m)     | (deg)      | Stag       | 0     |                                                                                                                |
| 1          | 20          | 0.14                 | 0.69    | 106        | EBB        |       |                                                                                                                |
| 1          | 20          | 0.00                 | 0.69    | N/A        | EBB        |       |                                                                                                                |
| 1          | 20          | 0.00                 | 0.69    | N-A        | EBB        |       |                                                                                                                |
| 2          | 40          | 0.10                 | 0.64    | 110        | EBB        |       |                                                                                                                |
| 2          | 40          | 0.14                 | 0.64    | 142        | EBB        |       |                                                                                                                |
| 2          |             |                      |         |            |            |       |                                                                                                                |

Table 1. Unai Obyan Bay current study data for Transects A-E. See Figs. 1 and 2 for transect locations. Table 1. Continued.

| Sta.                                                     | Dist. From                                                                                                                                                                         | Current Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bearing                                                                                         | Tide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10,                                                      | Shore (m)                                                                                                                                                                          | (m⁄sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (deg)                                                                                           | Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3                                                        | 60                                                                                                                                                                                 | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 235                                                                                             | EBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3                                                        | 60                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 346                                                                                             | EBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3                                                        | 60                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                              | EBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4                                                        | 80                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 313                                                                                             | EBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4                                                        | 80                                                                                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 345                                                                                             | EBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4                                                        | 80                                                                                                                                                                                 | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 325                                                                                             | EBB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| lranse                                                   |                                                                                                                                                                                    | aber 14, 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                          |                                                                                                                                                                                    | fide at $07:11 = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:                                                                                           | Start 1:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                          | High                                                                                                                                                                               | Tide at $14:25 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .7 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | Finish 12:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                                                        | 150                                                                                                                                                                                | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 275                                                                                             | FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                        | 150                                                                                                                                                                                | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 272                                                                                             | FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                                        | 150                                                                                                                                                                                | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 265                                                                                             | FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                          |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                          | ant Ca Daara                                                                                                                                                                       | her 10 1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P                                                        |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [ranse                                                   |                                                                                                                                                                                    | aber 12, 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Times                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [rans(                                                   | High                                                                                                                                                                               | Tide at $13:21 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:                                                                                           | Start 12:15<br>Rinich 12:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Transe                                                   | High                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:                                                                                           | Start 12:15<br>Finish 12:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                          | High<br>Low 1                                                                                                                                                                      | Tide at 13:21 = 0<br>Fide at 19:30 = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 | Finish 12:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                          | High<br>Low ]<br>Dist. From                                                                                                                                                        | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 m<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bearing                                                                                         | Finish 12:35<br>Tide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sta.                                                     | High<br>Low 1                                                                                                                                                                      | Tide at 13:21 = 0<br>Fide at 19:30 = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 | Finish 12:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sta.<br>no.                                              | High<br>Low 7<br>Dist. From<br>Shore (m)                                                                                                                                           | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 m<br>Depth<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bearing<br>(deg)                                                                                | Finish 12:35<br>Tide<br>Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sta.<br>no.                                              | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15                                                                                                                                     | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 m<br>Depth<br>(m)<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bearing<br>(deg)<br>340                                                                         | Finish 12:35<br>Tide<br>Stage<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sta.<br>no.<br>1<br>1                                    | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15                                                                                                                               | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 m<br>Depth<br>(m)<br>0.72<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bearing<br>(deg)<br>340<br>135                                                                  | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sta.<br>no.                                              | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15                                                                                                                                     | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 m<br>Depth<br>(m)<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bearing<br>(deg)<br>340                                                                         | Finish 12:35<br>Tide<br>Stage<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sta.<br>no.<br>1<br>1                                    | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15                                                                                                                               | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 m<br>Depth<br>(m)<br>0.72<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bearing<br>(deg)<br>340<br>135                                                                  | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sta.<br>no.<br>1<br>1<br>1<br>2                          | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15                                                                                                                         | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bearing<br>(deg)<br>340<br>135<br>347                                                           | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sta.<br>no.<br>1<br>1<br>1                               | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>15<br>30                                                                                                             | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bearing<br>(deg)<br>340<br>135<br>347<br>350                                                    | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sta.<br>no.<br>1<br>1<br>1<br>2<br>2<br>2                | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>15<br>30<br>30<br>30<br>30                                                                                           | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076                                      | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sta.<br>no.<br>1<br>1<br>1<br>2<br>2<br>2<br>3           | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>30<br>30<br>30<br>30<br>45                                                                                           | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20<br>0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076<br>067                               | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sta.<br>no.<br>1<br>1<br>2<br>2<br>2<br>3<br>3           | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>15<br>30<br>30<br>30<br>30<br>45<br>45                                                                               | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20<br>0.46<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65<br>0.51<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076<br>067<br>090                        | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sta.<br>no.<br>1<br>1<br>1<br>2<br>2<br>2<br>3           | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>30<br>30<br>30<br>30<br>45                                                                                           | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20<br>0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076<br>067                               | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sta.<br>no.<br>1<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>3 | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>15<br>30<br>30<br>30<br>30<br>30<br>30<br>45<br>45<br>45                                                             | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20<br>0.46<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65<br>0.51<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076<br>067<br>090                        | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sta.<br>no.<br>1<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>3 | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>15<br>30<br>30<br>30<br>30<br>30<br>45<br>45<br>45<br>45<br>45                                                       | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20<br>0.46<br>0.21<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65<br>0.65<br>0.51<br>0.51<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076<br>067<br>090                        | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sta.<br>no.<br>1<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>3 | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>15<br>30<br>30<br>30<br>30<br>30<br>45<br>45<br>45<br>45<br>45<br>45<br>Low 7                                        | Tide at 13:21 = 0<br>Fide at 19:30 = 0.<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20<br>0.46<br>0.21<br>0.17<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77<br>1.77 | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076<br>067<br>090<br>061                 | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sta.<br>no.<br>1<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>3 | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>15<br>30<br>30<br>30<br>30<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>High                                         | Tide at $13:21 = 0$<br>Fide at $19:30 = 0$ .<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20<br>0.46<br>0.21<br>0.17<br>mber 14, 1987<br>Fide at 07:11 = 0.<br>Tide at 14:25 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.7 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076<br>067<br>090<br>061<br>Time:        | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLO |
| Sta.<br>no.<br>1<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>3 | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>15<br>30<br>30<br>30<br>30<br>30<br>30<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45 | Tide at $13:21 = 0$<br>Fide at $19:30 = 0$ .<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20<br>0.46<br>0.21<br>0.17<br>mber 14, 1987<br>Fide at 07:11 = 0.<br>Tide at 14:25 = 0<br>0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0 | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076<br>067<br>090<br>061<br>Time:<br>316 | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>2<br>2<br>3<br>3<br>3                          | High<br>Low 7<br>Dist. From<br>Shore (m)<br>15<br>15<br>15<br>15<br>30<br>30<br>30<br>30<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>High                                         | Tide at $13:21 = 0$<br>Fide at $19:30 = 0$ .<br>Current Speed<br>(m/sec)<br>0.14<br>0.11<br>0.13<br>0.17<br>0.17<br>0.20<br>0.46<br>0.21<br>0.17<br>mber 14, 1987<br>Fide at 07:11 = 0.<br>Tide at 14:25 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 m<br>Depth<br>(m)<br>0.72<br>0.72<br>0.72<br>0.65<br>0.65<br>0.65<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.51<br>0.7 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bearing<br>(deg)<br>340<br>135<br>347<br>350<br>090<br>076<br>067<br>090<br>061<br>Time:        | Finish 12:35<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLO |

| Tab1e | > 1. | Continued. |
|-------|------|------------|
|       |      |            |

| Transect D: | December 12, 1987                    |       |              |
|-------------|--------------------------------------|-------|--------------|
|             | High Tide at $13:21 = 0.7 \text{ m}$ | Time: | Start 11:12  |
|             | Low Tide at $19:30 = 0.4 \text{ m}$  |       | Finish 11:32 |

| Sta.                                             | Dist. From                                                                                                             | Current Speed                                                                                                                                       | Depth                                                                                                               | Bearing                                                                                | Tide                                                                                                           |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| no.                                              | Shore (m)                                                                                                              | (m/sec)                                                                                                                                             | (m)                                                                                                                 | (deg)                                                                                  | Stage                                                                                                          |  |
|                                                  |                                                                                                                        |                                                                                                                                                     |                                                                                                                     |                                                                                        |                                                                                                                |  |
| 1                                                | 7                                                                                                                      | 0.19                                                                                                                                                | 0.54                                                                                                                | 340                                                                                    | FLOOD                                                                                                          |  |
| 1                                                | 7                                                                                                                      | 0.13                                                                                                                                                | 0.54                                                                                                                | 335                                                                                    | FLOOD                                                                                                          |  |
| 1                                                | 7                                                                                                                      | 0.19                                                                                                                                                | 0.54                                                                                                                | 341                                                                                    | FLOOD                                                                                                          |  |
|                                                  |                                                                                                                        |                                                                                                                                                     |                                                                                                                     |                                                                                        |                                                                                                                |  |
| 2                                                | 22                                                                                                                     | 0.23                                                                                                                                                | 0.94                                                                                                                | 254                                                                                    | FLOOD                                                                                                          |  |
| 2                                                | 22                                                                                                                     | 0.19                                                                                                                                                | 0.94                                                                                                                | 282                                                                                    | FLOOD                                                                                                          |  |
| 2                                                | 22                                                                                                                     | 0.18                                                                                                                                                | 0.94                                                                                                                | 255                                                                                    | FLOOD                                                                                                          |  |
|                                                  |                                                                                                                        |                                                                                                                                                     |                                                                                                                     |                                                                                        |                                                                                                                |  |
| 3                                                | 37                                                                                                                     | 0.31                                                                                                                                                | 0.98                                                                                                                | 258                                                                                    | FLOOD                                                                                                          |  |
| 3                                                | 37                                                                                                                     | 0.28                                                                                                                                                | 0.98                                                                                                                | 265                                                                                    | FLOOD                                                                                                          |  |
| 3                                                | 37                                                                                                                     | 0.46                                                                                                                                                | 0.98                                                                                                                | 265                                                                                    | FLOOD                                                                                                          |  |
| -                                                | - ,                                                                                                                    |                                                                                                                                                     |                                                                                                                     |                                                                                        | 12002                                                                                                          |  |
| Transe                                           | ct D: Decen                                                                                                            | nber 14, 1987                                                                                                                                       |                                                                                                                     |                                                                                        |                                                                                                                |  |
|                                                  | Low 2                                                                                                                  | Fide at $07:11 = 0$ .                                                                                                                               | 2 m                                                                                                                 | Time:                                                                                  | Start 14:20                                                                                                    |  |
|                                                  | High                                                                                                                   | Tide at $14:25 = 0$                                                                                                                                 | .7 m                                                                                                                |                                                                                        | Finish 14:35                                                                                                   |  |
|                                                  | 1.100<br>- 100                                                                                                         |                                                                                                                                                     |                                                                                                                     |                                                                                        |                                                                                                                |  |
| 4                                                | 110                                                                                                                    | 0.17                                                                                                                                                | 8                                                                                                                   | 330                                                                                    | HIGH                                                                                                           |  |
| 4                                                | 110                                                                                                                    | 0.18                                                                                                                                                | 8                                                                                                                   | 304                                                                                    | HIGH                                                                                                           |  |
| 4                                                | 110                                                                                                                    | 0.25                                                                                                                                                | 8                                                                                                                   | 330                                                                                    | HIGH                                                                                                           |  |
|                                                  |                                                                                                                        |                                                                                                                                                     |                                                                                                                     |                                                                                        |                                                                                                                |  |
| Transe                                           | ct E: Decer                                                                                                            | nber 13, 1987                                                                                                                                       |                                                                                                                     |                                                                                        |                                                                                                                |  |
|                                                  |                                                                                                                        |                                                                                                                                                     |                                                                                                                     |                                                                                        |                                                                                                                |  |
|                                                  | High                                                                                                                   | Tide at $13:53 = 0$                                                                                                                                 |                                                                                                                     | Time:                                                                                  | Start 10:30                                                                                                    |  |
|                                                  | High                                                                                                                   |                                                                                                                                                     |                                                                                                                     | Time:                                                                                  | Start 10:30<br>Finish 10:50                                                                                    |  |
| Sta.                                             | High<br>Low 2                                                                                                          | Tide at $13:53 = 0$<br>Fide at $06:24 = 0$ .                                                                                                        | 1 m                                                                                                                 |                                                                                        | Finish 10:50                                                                                                   |  |
| Sta.                                             | High<br>Low 2<br>Dist. From                                                                                            | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed                                                                                            | 1 m<br>Depth                                                                                                        | Bearing                                                                                | Finish 10:50<br>Tide                                                                                           |  |
| Sta.<br>no.                                      | High<br>Low 2                                                                                                          | Tide at $13:53 = 0$<br>Fide at $06:24 = 0$ .                                                                                                        | 1 m                                                                                                                 |                                                                                        | Finish 10:50                                                                                                   |  |
| по.                                              | High<br>Low 7<br>Dist. From<br>Shore (m)                                                                               | Tide at 13:53 = 0<br>Tide at 06:24 = 0.<br>Current Speed<br>(m/sec)                                                                                 | 1 m<br>Depth<br>(m)                                                                                                 | Bearing<br>(deg)                                                                       | Finish 10:50<br>Tide<br>Stage                                                                                  |  |
| no.<br>1                                         | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20                                                                         | Tide at 13:53 = 0<br>Tide at 06:24 = 0.<br>Current Speed<br>(m'sec)<br>0.15                                                                         | 1 m<br>Depth<br>(m)<br>1.07                                                                                         | Bearing<br>(deg)<br>295                                                                | Finish 10:50<br>Tide<br>Stage<br>FLOOD                                                                         |  |
| no.<br>1<br>1                                    | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20                                                                   | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m/sec)<br>0.15<br>0.15                                                                 | 1 m<br>Depth<br>(m)<br>1.07<br>1.07                                                                                 | Bearing<br>(deg)<br>295<br>297                                                         | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD                                                                |  |
| no.<br>1                                         | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20                                                                         | Tide at 13:53 = 0<br>Tide at 06:24 = 0.<br>Current Speed<br>(m'sec)<br>0.15                                                                         | 1 m<br>Depth<br>(m)<br>1.07                                                                                         | Bearing<br>(deg)<br>295                                                                | Finish 10:50<br>Tide<br>Stage<br>FLOOD                                                                         |  |
| no.<br>1<br>1<br>1                               | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>20                                                       | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m/sec)<br>0.15<br>0.15<br>0.15                                                         | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07                                                                         | Bearing<br>(deg)<br>295<br>297<br>291                                                  | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD                                                       |  |
| no.<br>1<br>1<br>1<br>2                          | High<br>Low 2<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>20<br>40                                                 | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m/sec)<br>0.15<br>0.15<br>0.15<br>0.15<br>0.17                                         | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54                                                                 | Bearing<br>(deg)<br>295<br>297<br>291<br>293                                           | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                              |  |
| no.<br>1<br>1<br>1<br>2<br>2                     | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>40<br>40                                                 | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m'sec)<br>0.15<br>0.15<br>0.15<br>0.17<br>0.18                                         | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54<br>0.54                                                         | Bearing<br>(deg)<br>295<br>297<br>291<br>293<br>310                                    | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                     |  |
| no.<br>1<br>1<br>1<br>2                          | High<br>Low 2<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>20<br>40                                                 | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m/sec)<br>0.15<br>0.15<br>0.15<br>0.15<br>0.17                                         | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54                                                                 | Bearing<br>(deg)<br>295<br>297<br>291<br>293                                           | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                                              |  |
| no.<br>1<br>1<br>1<br>2<br>2<br>2                | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>20<br>20<br>40<br>40<br>40<br>40                         | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m/sec)<br>0.15<br>0.15<br>0.15<br>0.15<br>0.17<br>0.18<br>0.12                         | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54<br>0.54<br>0.54                                                 | Bearing<br>(deg)<br>295<br>297<br>291<br>293<br>310<br>333                             | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                            |  |
| no.<br>1<br>1<br>1<br>2<br>2<br>2                | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>20<br>40<br>40<br>40<br>40<br>40<br>60                   | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m/sec)<br>0.15<br>0.15<br>0.15<br>0.15<br>0.17<br>0.18<br>0.12<br>0.27                 | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54<br>0.54<br>0.54<br>0.54                                         | Bearing<br>(deg)<br>295<br>297<br>291<br>293<br>310<br>333<br>342                      | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                            |  |
| no.<br>1<br>1<br>1<br>2<br>2<br>2                | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>20<br>40<br>40<br>40<br>40<br>40<br>60<br>60             | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m/sec)<br>0.15<br>0.15<br>0.15<br>0.15<br>0.17<br>0.18<br>0.12<br>0.27<br>0.18         | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54<br>0.54<br>0.54<br>0.54<br>0.48<br>0.48                         | Bearing<br>(deg)<br>295<br>297<br>291<br>293<br>310<br>333<br>342<br>335               | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD          |  |
| no.<br>1<br>1<br>1<br>2<br>2                     | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>20<br>40<br>40<br>40<br>40<br>40<br>60                   | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m/sec)<br>0.15<br>0.15<br>0.15<br>0.15<br>0.17<br>0.18<br>0.12<br>0.27                 | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54<br>0.54<br>0.54<br>0.54                                         | Bearing<br>(deg)<br>295<br>297<br>291<br>293<br>310<br>333<br>342                      | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD                            |  |
| no.<br>1<br>1<br>2<br>2<br>2<br>3<br>3<br>3      | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>40<br>40<br>40<br>40<br>40<br>60<br>60<br>60<br>60       | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m'sec)<br>0.15<br>0.15<br>0.15<br>0.17<br>0.18<br>0.12<br>0.27<br>0.18<br>0.28         | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.48<br>0.48<br>0.48         | Bearing<br>(deg)<br>295<br>297<br>291<br>293<br>310<br>333<br>342<br>335<br>330        | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD |  |
| no.<br>1<br>1<br>2<br>2<br>2<br>3<br>3<br>3<br>4 | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>40<br>40<br>40<br>40<br>40<br>60<br>60<br>60<br>60<br>80 | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m'sec)<br>0.15<br>0.15<br>0.15<br>0.17<br>0.18<br>0.12<br>0.27<br>0.18<br>0.28<br>0.20 | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.48<br>0.48<br>0.48<br>0.48 | Bearing<br>(deg)<br>295<br>297<br>291<br>293<br>310<br>333<br>342<br>335<br>330<br>354 | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD |  |
| no.<br>1<br>1<br>2<br>2<br>2<br>3<br>3<br>3      | High<br>Low 7<br>Dist. From<br>Shore (m)<br>20<br>20<br>20<br>40<br>40<br>40<br>40<br>40<br>60<br>60<br>60<br>60       | Tide at 13:53 = 0<br>Fide at 06:24 = 0.<br>Current Speed<br>(m'sec)<br>0.15<br>0.15<br>0.15<br>0.17<br>0.18<br>0.12<br>0.27<br>0.18<br>0.28         | 1 m<br>Depth<br>(m)<br>1.07<br>1.07<br>1.07<br>0.54<br>0.54<br>0.54<br>0.54<br>0.54<br>0.48<br>0.48<br>0.48         | Bearing<br>(deg)<br>295<br>297<br>291<br>293<br>310<br>333<br>342<br>335<br>330        | Finish 10:50<br>Tide<br>Stage<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD<br>FLOOD |  |

| Table 2.       | Substrate charas<br>Point counts of<br>given for each<br>substrate is all<br>zones are abbrev<br>reef platform,<br>given below.<br>A - Sand: grain<br>B - Gravel: grain<br>C - Cobble/rubb<br>D - Pavement: In<br>E - Living coras<br>F - Coralline as<br>G - Fleshy algas<br>H - In situ dead | eight dif<br>quadrat st<br>so given f<br>viated I,<br>and reef s<br>n size les<br>in size be<br>le: grain<br>n situ ree<br>l<br>gae: any<br>e | ferent<br>ation.<br>or eac<br>O, and<br>lope.<br>s that<br>tween<br>size g<br>f rock | t sub<br>Pe<br>ch ar<br>1 S f<br>Def<br>2 mm<br>great | strate<br>rcent<br>ea al<br>or in<br>initio<br>m<br>and<br>er th | e chan<br>cover<br>ong ti<br>ner re<br>ons of<br>4 cm<br>an 4 c | racte<br>r for<br>he tr<br>sef p<br>f sub | risti<br>ceach<br>cansec<br>platfo | cs (A<br>clas<br>t. T<br>rm, o | -H) are<br>s of<br>he reef<br>uter |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|------------------------------------|--------------------------------|------------------------------------|
| Station<br>no. | Distance from<br>Shore in meters                                                                                                                                                                                                                                                               | Reef<br>Type*                                                                                                                                 | A                                                                                    | B                                                     | С                                                                | D                                                               | E                                         | F                                  | G                              | H                                  |
| Transect       | 104.000                                                                                                                                                                                                                                                                                        | Ŧ                                                                                                                                             |                                                                                      |                                                       |                                                                  |                                                                 |                                           |                                    |                                |                                    |
| A-1            | 13                                                                                                                                                                                                                                                                                             | I                                                                                                                                             |                                                                                      |                                                       | 9                                                                | 7                                                               |                                           |                                    |                                |                                    |
| A-1            | 13                                                                                                                                                                                                                                                                                             | I                                                                                                                                             |                                                                                      |                                                       | 2                                                                | 14                                                              |                                           |                                    |                                |                                    |
| A-1            | 13                                                                                                                                                                                                                                                                                             | I                                                                                                                                             |                                                                                      | •                                                     | 16                                                               |                                                                 |                                           |                                    |                                |                                    |
| A-2            | 33                                                                                                                                                                                                                                                                                             | ĩ                                                                                                                                             | 13                                                                                   | 3                                                     |                                                                  |                                                                 |                                           |                                    |                                |                                    |
| A-2            | 33                                                                                                                                                                                                                                                                                             | I                                                                                                                                             | 15                                                                                   |                                                       |                                                                  |                                                                 | 1                                         |                                    |                                |                                    |
| A-2            | 33                                                                                                                                                                                                                                                                                             | I                                                                                                                                             | 14                                                                                   | 2                                                     |                                                                  |                                                                 |                                           |                                    |                                |                                    |
| A-3            | 53                                                                                                                                                                                                                                                                                             | 0                                                                                                                                             | 6                                                                                    | 2                                                     |                                                                  | 6                                                               |                                           | 2                                  |                                |                                    |
| A-3            | 53                                                                                                                                                                                                                                                                                             | 0                                                                                                                                             | 13                                                                                   |                                                       |                                                                  | 3                                                               |                                           |                                    |                                |                                    |
| A-3            | 53                                                                                                                                                                                                                                                                                             | 0                                                                                                                                             | 5                                                                                    |                                                       |                                                                  | 8                                                               |                                           | 3                                  |                                |                                    |
| A-4            | 73                                                                                                                                                                                                                                                                                             | 0                                                                                                                                             | 3                                                                                    |                                                       |                                                                  | 4                                                               |                                           | 8                                  | 1                              |                                    |
| A-4            | 73                                                                                                                                                                                                                                                                                             | 0                                                                                                                                             | 5                                                                                    |                                                       |                                                                  | 11                                                              |                                           | •                                  |                                | 3                                  |
| A-4            | 73                                                                                                                                                                                                                                                                                             | U<br>S                                                                                                                                        |                                                                                      |                                                       |                                                                  | 11<br>16                                                        |                                           | 2                                  |                                | 3                                  |
| A-5            |                                                                                                                                                                                                                                                                                                | S                                                                                                                                             |                                                                                      |                                                       |                                                                  | 16                                                              |                                           |                                    |                                |                                    |
| A-5            |                                                                                                                                                                                                                                                                                                | S                                                                                                                                             |                                                                                      |                                                       |                                                                  | 15                                                              | 1                                         |                                    |                                |                                    |
| A-5            |                                                                                                                                                                                                                                                                                                | S<br>S                                                                                                                                        |                                                                                      |                                                       |                                                                  | 16                                                              | 1                                         |                                    |                                |                                    |
| A-5            |                                                                                                                                                                                                                                                                                                | S                                                                                                                                             | 1                                                                                    | 1                                                     | 1                                                                | 13                                                              |                                           |                                    |                                |                                    |
| A-5<br>A-5     |                                                                                                                                                                                                                                                                                                | S                                                                                                                                             | T                                                                                    |                                                       | 4                                                                | 7                                                               | 2                                         | 3                                  |                                |                                    |
| A-5            |                                                                                                                                                                                                                                                                                                | S                                                                                                                                             |                                                                                      |                                                       | -                                                                | 15                                                              | 4                                         |                                    | 1                              |                                    |
| A-5            |                                                                                                                                                                                                                                                                                                | S                                                                                                                                             |                                                                                      |                                                       | 4                                                                | 11                                                              | 1                                         |                                    | -                              |                                    |
| A-5            |                                                                                                                                                                                                                                                                                                | S                                                                                                                                             |                                                                                      | 3                                                     | Ŧ                                                                | 11                                                              | 2                                         |                                    |                                |                                    |
|                | ints: Inner Reef                                                                                                                                                                                                                                                                               |                                                                                                                                               | 42                                                                                   | 5                                                     | 27                                                               | 21                                                              | 1                                         |                                    |                                |                                    |
|                | ints: Outer Reef                                                                                                                                                                                                                                                                               |                                                                                                                                               | 32                                                                                   | 2                                                     |                                                                  | 43                                                              | -                                         | 15                                 | 1                              | 3                                  |
|                | ints: Reef Slope                                                                                                                                                                                                                                                                               |                                                                                                                                               | 1                                                                                    | 4                                                     | 9                                                                | 120                                                             | 6                                         | 3                                  | 1                              | 1.12                               |
|                | ate: Inner Reef P                                                                                                                                                                                                                                                                              |                                                                                                                                               | 44                                                                                   | 5                                                     | 28                                                               | 22                                                              | ĭ                                         | -                                  | _                              |                                    |
|                | ate: Outer Reef P                                                                                                                                                                                                                                                                              |                                                                                                                                               | 33                                                                                   | 2                                                     |                                                                  | 45                                                              |                                           | 16                                 | 1                              | 3                                  |
|                | ate: Reef Slope (                                                                                                                                                                                                                                                                              |                                                                                                                                               | 1                                                                                    | 3                                                     | 6                                                                | 83                                                              | 4                                         | 2                                  | 1                              |                                    |

| Station<br>no. | Distance i<br>Shore in r |                  | A      | B  | С      | D        | E      | F | G      | H   |
|----------------|--------------------------|------------------|--------|----|--------|----------|--------|---|--------|-----|
| Transect       | B:                       |                  |        |    |        |          |        |   |        |     |
| B-1            | 20                       | I                |        |    | 1      | 15       |        |   |        |     |
| B-1            | 20                       | I                |        |    | 1      | 15       |        |   |        |     |
| B-1            | 20                       | I                |        |    |        | 16       |        |   |        |     |
| B-2            | 40                       | 0                |        |    | 8      |          | 2      | 4 | 2      |     |
| B-2            | 40                       | 0                |        |    |        | 16       |        |   |        |     |
| B-2            | 40                       | 0                |        |    |        |          |        |   |        | 16  |
| B-3            | 60                       | 0                | 3      |    | 6      | 7        |        |   |        |     |
| B-3            | 60                       | 0                |        |    | 8      | 3        | 1      | 1 | 2      | 1   |
| B-3            | 60                       | 0                | 8      |    | 1      |          |        |   | 7      |     |
| B-4            | 80                       | 0                |        |    | 15     |          |        |   | 1      |     |
| B-4            | 80                       | 0                |        |    | 1      | 14       |        |   |        | 1   |
| B-4            | 80                       | 0                |        |    |        | 16       |        |   |        |     |
| B-5            |                          | S                |        |    |        | 16       |        |   |        |     |
| B-5            |                          | S                |        |    |        | 15       | 1      |   |        |     |
| B-5            |                          | S                |        |    | 12     | 1        |        | 3 |        |     |
| B-5            |                          | S                |        |    |        | 14       | 2      |   |        |     |
| B-5            |                          | S                |        |    |        | 15       |        |   | 1      |     |
| B-5            | -                        | S                | 3      |    |        | 13       |        |   |        |     |
|                |                          | r Reef Platform  |        |    | 2      | 46       |        |   |        |     |
|                |                          | r Reef Platform  | 11     |    | 39     | 56       | 3      | 5 | 12     | 18  |
|                |                          | Slope (25ft)     | 3      |    | 12     | 74       | 3      | 3 | 1      |     |
| •              |                          | Reef Platform    |        |    | 4      | 96       |        |   |        | 6.5 |
|                |                          | Reef Platform    | 8      |    | 27     | 39       | 2      | 4 | 8      | 13  |
| % Substr       | ate: Reef                | Slope (25ft)     | 3      |    | 13     | 77       | 3      | 3 | 1      |     |
| Transect       | : C:                     |                  |        |    |        |          |        |   |        |     |
| C-1            | 15                       | I                | 5      |    |        | 11       |        |   |        |     |
| C-1            | 15                       | I                | 5      |    |        | 11       |        |   |        |     |
| C-1            | 15                       | I                | 11     | 2  |        | 3<br>1   |        |   |        |     |
| C-2            | 30                       | 0                | 10     |    | 2      | 1        | 2      |   |        | 1   |
| C-2            | 30                       | 0                | 8      |    |        | 7        |        |   | 1      |     |
| C-2            | 30                       | 0                | 2      | 3  | 8      |          |        | 1 | 2<br>1 |     |
| C-3            | 45                       | 0                | 2      | 10 | 1      |          |        | 2 | 1      |     |
| C-3            | 45                       | 0                | 2<br>1 |    | 5<br>8 |          |        | 8 | 1<br>1 |     |
| C-3            | 45                       | 0                | 1      | 1  | 8      | 4        |        | 1 | 1      |     |
| C-4            |                          | S                |        |    |        | 15       | 1      |   |        |     |
| C-4            |                          | S                |        |    |        | 16       |        |   |        |     |
| C-4            |                          | S                |        | 1  | 1      | 14       |        |   |        |     |
| C-4            |                          | S                | 1      |    | 1      | 14       |        |   |        |     |
| C-4            |                          | S<br>S<br>S<br>S |        |    | 3<br>3 | 11<br>11 | 1<br>2 |   | 1      |     |
| C-4            |                          |                  |        |    |        |          |        |   |        |     |

Table 2. Continued.

| Table 2. Continued | Table 2. Conti |
|--------------------|----------------|
|--------------------|----------------|

| Station   | Distance from      | Reef    | A  | В       | С        | D          | E | F      | G    | Н |
|-----------|--------------------|---------|----|---------|----------|------------|---|--------|------|---|
| no.       | Shore in meters    | Type*   |    |         |          |            |   |        |      |   |
| Tatal Da  | ints: Inner Reef   | Disting | 21 | 2       | 25       | , <b>.</b> |   |        |      |   |
|           | ints: Outer Reef   |         | 25 | 2<br>14 | 25<br>24 | 12         | 2 | 12     | 6    | 1 |
|           | ints: Reef Slope   | riation | 1  | 1       | 8        | 81         | 4 | 12     | 1    | * |
|           | ate: Inner Reef P  | latform | 44 | 4       | 52       | U.L        | - |        | •    |   |
|           | ate: Outer Reef P  |         | 26 | 15      | 25       | 13         | 2 | 13     | 6    | 1 |
|           | ate: Reef Slope (  |         | 1  | 1       | 8        | 84         | 4 | 15     | 1    | * |
| 70 300301 | ate. Meel Slope (  | 45107   | -  | -       | 0        | 04         | 4 |        | -    |   |
| Station   | Distance from      | Reef    | A  | в       | С        | D          | E | F      | G    | Н |
| no.       | Shore in meters    | Type*   |    |         |          |            |   |        |      |   |
|           |                    |         |    |         |          |            |   |        |      |   |
| Transect  | D:                 |         |    |         |          |            |   |        |      |   |
| D-1       | 7                  | I       | 11 | 2       |          | 3          |   |        |      |   |
| D-1       | 7                  | I       | 3  |         |          | 11         |   |        | 2    |   |
| D-1       | 7                  | I       |    |         | 16       |            |   |        |      |   |
| D-2       | 22                 | 0       | 6  |         |          | 10         |   | 123    |      |   |
| D-2       | 22                 | 0       | 2  |         | 6        |            |   | 8      |      |   |
| D-2       | 22                 | 0       | 13 |         |          | 3          |   |        |      |   |
| D-3       | 37                 | 0       |    |         | 8        | 3          |   | 5      |      |   |
| D-3       | 37                 | 0       |    |         |          | 8          | 8 |        |      |   |
| D-3       | 37                 | 0       |    |         | 5        |            |   | 10     | 1    |   |
| D-4       |                    | S       |    |         |          | 16         |   |        |      |   |
| D-4       |                    | S       |    |         | 1        | 15         |   |        |      |   |
| D-4       |                    | S       |    | 1       |          | 15         |   |        |      |   |
| D-4       |                    | S       |    |         |          | 15         | 1 |        |      |   |
| D-4       |                    | S       |    |         |          | 16         |   |        |      |   |
| D-4       |                    | S       |    | 2       |          | 14         |   |        |      |   |
|           | oints: Inner Reef  |         | 14 | 2       | 16       | 14         |   | 2      | 2014 |   |
|           | oints: Outer Reef  |         | 21 |         | 19       | 24         | 8 | 23     | 1    |   |
|           | oints: Reef Slope  |         |    | 3       | 1        | 91         | 1 |        |      |   |
|           | rate: Inner Reef H |         | 29 | 4       | 33       | 29         | - |        | 4    |   |
|           | rate: Outer Reef H |         | 22 |         | 20       | 25         | 8 | 24     | 1    |   |
| % Substr  | rate: Reef Slope ( | (25ft)  |    | 3       | 1        | 95         | 1 |        |      |   |
| Transect  | t E:               |         |    |         |          |            |   |        |      |   |
| E-1       | 20                 | I       |    |         |          | 16         |   |        |      |   |
| E-1       | 20                 | ī       | 3  |         |          | 13         |   |        |      |   |
| E-1       | 20                 | Ī       | 7  |         |          | 9          |   |        |      |   |
| E-2       | 40                 | ō       | 2  | 12      |          | 2          |   |        |      |   |
| E-2       |                    | 0       |    |         | 15       |            | 1 |        |      |   |
|           | 40                 | ~       |    |         |          |            |   |        |      |   |
| E-2       | 40<br>40           | õ       |    |         | 16       |            |   |        |      |   |
|           | 40<br>40<br>60     |         |    |         |          |            |   | 2<br>1 | 2    |   |

| Station  | Distance fro | om Reef       | A  | B  | С   | D   | E  | F  | G  | H  |
|----------|--------------|---------------|----|----|-----|-----|----|----|----|----|
| no.      | Shore in me  | ters Type*    |    |    |     |     |    |    |    |    |
| E-3      | 60           | 0             | 1  |    | 2   | 13  |    |    |    |    |
| E-4      | 80           | 0             |    | 1  | 8   |     |    | 7  |    |    |
| E-4      | 80           | 0             |    |    | 14  |     | 1  | 1  |    |    |
| E-4      | 80           | 0             |    | 1  | 14  |     |    | 1  |    |    |
| Total Po | ints: Inner  | Reef Platform | 10 |    |     | 38  |    |    |    |    |
| Total Po | ints: Outer  | Reef Platform | 3  | 14 | 95  | 15  | 3  | 12 | 2  |    |
| % Substr | ate: Inner R | eef Platform  | 21 |    |     | 79  |    |    |    |    |
| % Substi | ate: Outer R | eef Platform  | 2  | 10 | 66  | 10  | 2  | 8  | 1  |    |
| All Tran | sects Combin | ed:           |    |    |     |     |    |    |    |    |
| Total Po | ints: Inner  | Reef Platform | 87 | 9  | 70  | 119 | 1  |    | 2  |    |
| Total Po | ints: Outer  | Reef Platform | 92 | 30 | 177 | 150 | 16 | 67 | 22 | 22 |
| Total Po | ints: Reef S | lope (25ft)   | 5  | 8  | 30  | 366 | 14 | 6  | 3  |    |
| % Substa | ate: Inner R | eef Platform  | 30 | 3  | 24  | 41  |    |    | 1  |    |
| % Substi | ate: Outer R | eef Platform  | 16 | 5  | 31  | 26  | 3  | 12 | 4  | 4  |
|          | ate: Reef S1 | ana (255+)    | 1  | 2  | 7   | 85  | 3  | 1  | 1  |    |

and the second s

----

Table 2. Continued.

## A QUANTITATIVE ASSESSMENT OF MARINE PLANTS

## by

# Susanne C. Wilkins

A baseline marine assessment of an area of Obyan Bay, Saipan, reef platform and the reef front slope along the 6- to 8-meter contour was conducted on December 10-16, 1988. The objective of this portion of the study was to assess the benthic flora of this area.

#### Methods

Marine plants and substrate were quantified by using the point-quadrat method described by Wilkins (1987) along a total of 9 transects, A-E as shown in Figures 1 and 2, pp. 4-5. Transects A through E ran from shore to near the seaward edge of the outer reef platform and varied in length from 70 meters for Transects A and B, to 45 meters, 40 meters, and 80 meters for Transects C, D, and E, respectively. The transects on the reef front slope are considered part of Transects A through D and are thus labeled with the same letters. They were 50-m long and ran along the 6- to 8-meter contour, perpendicular to transects on the reef platform.

The point-quadrat method provides data from which a rapid general assessment of percent cover and frequency of occurrence of any of the algal species is possible. Thus, distribution patterns, evenness or patchiness of the benthic algal species, can easily be recognized. The benthic plant assemblages were analyzed by tossing a 25x25-cm gridded quadrat at 10-m intervals along the length of each transect. Four parallel rows of nylon cord were tied across each dimension of the frame, so that 16 intersecting points were contained with the quadrat. Each plant species was recorded at every point it occurred. If algal turf was encountered under the points, then whatever was present, e.g., sand, dead coral, rubble, or live coral, was recorded.

Percent cover for each transect was calculated by taking the total points at which a species occurred, divided by the total points per transect. In addition, frequency of occurrence was calculated by taking the number of quadrat tosses in which a benthic constituent occurred, divided by the number of tosses per transect. Both cover and frequency values were converted to percent by multiplying by 100. Additional algal species along the transect were also recorded.

# **Results and Discussion**

Results of this study are presented in Tables 1 and 2. A total of 33 species of marine plants were quantified within the area of the Transects A through E. These transects were subdivided into inner and outer platform

zones as indicated by the distance from shore (Table 1). The transects along the reef front, A through D, had a total of 23 marine plant species. Highest percent plant coverage (22.2-46.5%) was recorded in the outer zones of the reef platform. Percent plant coverage along the transects on the reef front slope varied from 19.7% along Transect D to 38.4% along Transect B.

According to Cloud (1959) some of the western recfs of Saipan are typical truncated reef flats which are barely awash at low tide. Most of the areas, especially areas close to the reef edge, are affected by strong currents as a result of wave transport from the reef margin to the inner reef platform. Internal erosion has reduced many inner reef zones to pavement-like surfaces, patchily veneered by algal turf, sand, rubble, and only very few corals. Relatively depressed inner moat zones were noted at Transects C and E. Algae such as <u>Cladophoropsis</u> sp., <u>Gelidiopsis intricata</u>, two species of <u>Sphacelaria</u>, and <u>Jania capillacea</u> represent the prominent turf-forming species. The outer zones of the reef platform generally have elevated reef edges of richer organic growth. Increased coral and articulated coralline algal coverage provide topographic relief and habitats for a variety of organisms.

<u>Turbinaria ornata</u> was generally common in the outer platform zones as was <u>Neogoniolithon frutescens</u>. <u>Liagora</u> sp. was common throughout the entire study area but was especially abundant along the reef front slope.

## Literature Cited

- Cloud, P. E., Jr. 1959. Submarine topography and shoalwater ecology, Part 4, of geology of Saipan, Marianas Islands. U.S. Geol. Surv., Prof. Paper 280 K, pp. 366-445.
- Wilkins, S. de C. 1987. A quantitative assessment of marine plants. pp. 33-46. In R. H. Randall (ed.), A marine survey of the northern Tanapag reef platform. Univ. Guam Mar. Lab., Tech. Rept. 87.

Table 1. Frequency and percent cover of the benthic flora of five transects (A, B, C, D, and E). Each transect was subdivided into inner and outer zone as indicated by the distance from shore. Plain numbers indicate percent coverage; numbers in parentheses indicate frequency of occurrence converted to percent (see Methods in text). Algal species occurring epiphytically on other algae or occurring in the vicinity of the transect are marked with an X.

|                                                                                                                                                                                     |           |              |           |                    | TRA                 | NSECTS                        |           |              |                    |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------|--------------------|---------------------|-------------------------------|-----------|--------------|--------------------|-----------------|
|                                                                                                                                                                                     | A<br>0-40 | 40-70        | в<br>0-40 | 40-70              | C<br>0-25           | 25-45                         | D<br>0-20 | 20-40        | 0-40               | 40-80           |
| CYANOPHYTA                                                                                                                                                                          |           |              |           |                    |                     |                               |           |              |                    |                 |
| Hormonthanmion enteromorphoides<br>Bornet & Thuret                                                                                                                                  | 1.2(20)   |              | x         |                    |                     | 3 025                         | 4.2(33)   |              |                    | 1.2(20)         |
| <u>Microcoleus lyngbyaceus</u> (Kutz.) Crovan<br><u>Schizothrix calcicola</u> (Ag.) Gomont<br><u>Schizothrix mexicana</u> Gomont                                                    | x         | x<br>2.1(33) | 1.2(20)   | 2.1(33)<br>2.1(33) | 3.1(50)             | 4.2(67)<br>2.1(33)            |           | 3.1(50)      |                    | x<br>1.2(20)    |
| CHLOROPHYTA                                                                                                                                                                         |           |              |           |                    |                     |                               |           |              |                    |                 |
| <u>Acetabularia moebii</u> Solms-Lenbach<br><u>Boergensenia forbesii</u> (Harv.) Feldmann<br>Cladophoropsis sp.                                                                     | 5.0(40)   | x            | 5.0(60)   | 4.2(67)            | 6.2(50)             |                               |           |              | 3.1(50)<br>3.1(50) |                 |
| <u>Caulerpa serrulata</u> (Forsk.) J. Ag.<br><u>Dictyosphaeria cavernosa</u> (Forsk.) Boerg.<br><u>Dictyosphaeria versluysii</u> W. v. Bossee<br><u>Halimeda opuntia</u> (L.) Lamx. | 510(40)   | 2.1(33)      | 2.0(00)   | x                  | 0.2(50)             | 2.1(33)<br>2.1(33)<br>6.2(67) |           | X<br>3.1(50) | 1.6(25)            |                 |
| PHAEOPHYTA                                                                                                                                                                          |           |              |           |                    |                     |                               |           |              |                    |                 |
| <u>Dictyota</u> <u>friabilis</u> Setch.<br><u>Lobophora variegata</u> (Lamx.) Womersley<br><u>Ralfsia pangoensis</u> Setch.                                                         | x         |              |           |                    | 3.1(50)             | 2.1(33)                       | 2.1(33)   | 6.2(100)     |                    |                 |
| Sphacelaria furcigera Kutz.<br>Sphacelaria tribuloides Menegh.                                                                                                                      | 3.8(60)   | 4.2(67)      | 1.2(20)   |                    | 3.1(50)<br>6.2(100) | 2.1(33)                       | 4.2(67)   | 3.1(50)      | x                  | 2.5(40) 1.2(20) |
| Turbinaria ornata (Turner) J. Ag.                                                                                                                                                   | 5.0(00)   | 6.2(67)      | 1.2(20)   | 4.2(33)            | 0.2(100)            | 6.2(33)                       |           |              |                    | 1.2(20)         |
| RHODOPHYTA                                                                                                                                                                          |           |              |           |                    |                     |                               |           |              |                    |                 |
| <u>Amphiroa foliacea</u> Lamx.<br><u>Centroceras minutum</u> Yanada                                                                                                                 |           | 4.2(33)      |           | 2.1(33) 2.1(33)    |                     | x<br>2.1(33)                  |           | 3.1(50)      |                    |                 |
| Ceramium gracillimum Griff. & Gard.<br>Ceramium maxatlenese Dawson                                                                                                                  |           | x            |           | 2.1(33)            |                     | 4.2(67)                       |           | 3.1(50)      |                    | x               |
| Gelidiopsis intricata (Ag.) Vichers<br>Gelidium pusillum (Stackh.) LeJolis                                                                                                          |           | 2.1(33)      | 2.5(20)   | 2.1(33)            | 3.1(50)             | 4.2(67)                       | 6.2(100)  | ( 2/100)     | 6.2(50)            | 2.5(40)         |
| Herposiphonia tenella (C. Ag.) Naegeli<br>Hydrolithon reinboldii<br>(W. v. Bosse & Foslie) Foslie                                                                                   |           | 6.1(33)      | х         | 2.1(33)            |                     | 2.1(33)<br>2.1(33)            |           | 6.2(100)     |                    | 1.2(20)         |
| Hypnea pannosa J. Ag.<br>Jania sp.                                                                                                                                                  |           |              |           | 2 1/77)            | 3.1(50)             | 1 1/375                       |           | N.           |                    |                 |
| Jania capillacea Harvey                                                                                                                                                             |           | 4.2(67)      |           | 2.1(33)<br>4.2(67) | 6.2(100)            | 2.1(33)<br>X                  | 2.1(33)   | X<br>6.2(50) | x                  | 2.5(40)         |

## Table 1.Continued.

|                                                                                                             |    |                    |                                         |                  |                  | TRA            | NSECTS                       | 2                   |                     |                     |                     |
|-------------------------------------------------------------------------------------------------------------|----|--------------------|-----------------------------------------|------------------|------------------|----------------|------------------------------|---------------------|---------------------|---------------------|---------------------|
|                                                                                                             |    | A                  |                                         | В                |                  | C              |                              | D                   |                     | E                   |                     |
|                                                                                                             |    | 0-40               | 40-70                                   | 0-40             | 40-70            | 0-25           | 25-45                        | 0-20                | 20-40               | 0-40                | 40-80               |
| <u>Laurencia</u> sp.<br><u>Liagora</u> sp.<br><u>Neogoniolithon frutescens</u>                              |    | 3.8(60)<br>1.2(20) | 4.2(33)<br>6.2(67)                      | 2.5(40)          | 4.2(33)          | 6.2(100)       | X 2.1(33)<br>4.2(33) 4.2(67) |                     | 3.1(50)<br>6.2(100) | 1.6(25)<br>3.1(50)  | 2.5(20)<br>3.8(40)  |
| (Foslie) Setch. & Mason<br><u>Polysiphonia scopulorum</u> Harv.<br><u>Porolithon onkodes</u> (Heyd.) Foslie |    |                    | 2.1(33)<br>X                            |                  | 4.2(67)          |                | 2.1(33)                      | x                   |                     |                     | 1.2(20)             |
| Diatom scuz                                                                                                 |    |                    |                                         |                  |                  |                |                              | 2.1(33)             |                     |                     |                     |
| Pavement<br>Live coral                                                                                      |    | 47.5(100)          | 10.4(67)                                | 40.0(100)        | 20.8(67)         | 25.0(100)      | 8.6(67)                      | 39.6(100)           | 25.0(50)            | 43.8(100)           | 2.5(20)             |
| Dead coral                                                                                                  |    | 2.5(20)            | 16.7(100)                               |                  | 10.4(67)         |                |                              | 10.4(33)            | 6.2(50)             | 17.2(75)            | 48.8(80)            |
| Rubble                                                                                                      |    | 2.5(20)            |                                         | 7.5(40) 37.5(60) | 8.3(33)          | 9.5(50)        |                              | 6.2(67)             | 9.4(50)             |                     | 2.5(20)             |
| Sand<br>Cobble<br>Snail                                                                                     |    | 32.5(60)           | 32.5(60) 22.9(67)<br>4.2(67)<br>2.1(33) |                  | 25.0(67)         | 25.0(100)      | 14.6(67)<br>12.5(100)        | 14.6(67)<br>2.1(33) |                     | 20.0(75)<br>3.1(25) | 17.5(80)<br>5.0(40) |
| Number of plant genera/transect<br>Number of plant species/transect<br>Overall percent plant coverage       | -  | 5<br>5<br>15.0     | 11<br>11<br>39.7                        | 5<br>5<br>12.4   | 11<br>12<br>35.7 | 8<br>9<br>34.9 | 15<br>16<br>39.7             | 6<br>7<br>27.2      | 11<br>11<br>46.5    | 5<br>5<br>15.6      | 11<br>12<br>22.2    |
| Total number of plant genera                                                                                | 29 |                    |                                         |                  |                  |                |                              |                     | 0.000               |                     |                     |
| Total number of plant species                                                                               | 33 |                    |                                         |                  |                  |                |                              |                     |                     |                     |                     |

Table 2. Frequency and percent cover of the benthic flora of four 50-m transects along the 6- to 8-m contour perpendicular to Transects A through D. Plain numbers indicate percent coverage; numbers in parentheses indicate frequency of occurrence converted to percent (see Methods in text). Algal species occurring epiphytically on other algae or occurring in the vicinity of the transect are marked with an X. -

|                                                   |         | TRAI     | ISECTS   |                                  |
|---------------------------------------------------|---------|----------|----------|----------------------------------|
|                                                   | Α       | 8        | C        | D                                |
| YANOPHYTA                                         |         |          |          |                                  |
| Hormonthanmion enteromorphoides Bornet & Thuret   | 1.0(17) |          |          |                                  |
| Microcoleus lyngbyaceus (Kutz.) Crovan            |         | 2.1(33)  | X        |                                  |
| Schizothrix calcicola (Ag.) Gomont                | 4.2(50) | 1.0(17)  | 3.1(33)  | 6.2(50)                          |
| Schizothrix mexicana Gomont                       | 1.0(17) | 1.0(17)  |          | х                                |
| CHLOROPHYTA                                       |         |          |          |                                  |
| Dictyosphaeria versluysii W. v. Bossee            | 1.0(17) |          | х        |                                  |
| <u>Kalimeda</u> <u>discoidea</u> Decaisne         | 2.1(33) |          |          | 1.0(17)                          |
| Halimeda opuntia (L.) Lamx.                       | 1.0(17) | 9.3(50)  | 3.1(50)  | x                                |
| PHAEOPHYTA                                        |         |          |          |                                  |
| <u>Dictyota bartayresii</u> Lamx.                 |         | x        | 2.1(33)  | 3.1(33)                          |
| Dictyota friabilis Setch.                         | 1.0(17) | 2.1(33)  |          |                                  |
| Lobophora variegata (Lamx.) Womersley             | Х       | 2.1(33)  |          |                                  |
| Sphacelaria furcigera Kutz.                       | 2.1(17) |          | 2.1(33)  | 1.0(17)                          |
| Sphacelaria tribuloides Menegh.                   |         | 2.1(17)  |          | 2.1(33)                          |
| Turbinaria ornata (Turner) J. Ag.                 |         | 1.0(17)  |          | 19 81 41 <b>8</b> 81 92 <b>8</b> |
| RHODOPHYTA                                        |         |          |          |                                  |
| <u>Amphiroa</u> <u>fragilissima</u> (L.) Lamx.    |         | x        | 1.0(17)  |                                  |
| Ceramium gracillimum Griff. & Gard.               |         |          | 2.1(33)  |                                  |
| Gelidiopsis intricata (Ag.) Vichers               |         | 1.0(17)  | х        |                                  |
| Hypnea pannosa J. Ag.                             | 1.0(17) |          | 2.1(17)  |                                  |
| Jania sp.                                         | 2.1(33) | 1.0(17)  | 2.1(33)  | 4.2(50)                          |
| Jania capillacea Harvey                           | x       | x        | 1.0(17)  |                                  |
| Liagora sp.                                       | 4.2(50) | 10.4(67) |          | 2.1(17)                          |
| Neogoniolithon frutescens (Foslie) Setch. & Mason |         | 4.2(33)  | 1.0(17)  |                                  |
| Polysiphonia scopulorum Harv.                     | 3.2(33) |          |          | х                                |
| Porolithon onkodes (Heyd.) Foslie                 |         | 2.1(33)  | 6.2(50)  |                                  |
| Diatom scuz                                       | 6.2(67) |          | 10.4(50) | 9.4(67)                          |

Table 2. Continued.

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                     |                                  |          | TRA              | ISECTS           |          |
|----------------------------------------------------------------------------------------------------------|----------------------------------|----------|------------------|------------------|----------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                     |                                  | A        | В                | С                | D        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                     | Pavement                         | 47.9(83) | 32.3(67)         | 17.7(67)         | 38.5(50) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                     | Live coral<br>Dead coral         |          | 9.3(67)          |                  |          |
| n 1.0(17)<br>1.0(17)<br>4.2(33)<br>plant genera/transect 10 11 11 7<br>plant species/transect 12 13 11 7 | Rubble<br>Sand                   |          |                  | 2.1(17)          |          |
| n 1.0(17)<br>4.2(33)<br>plant genera/transect 10 11 11 7<br>plant species/transect 12 13 11 7            | Soft coral<br>Snail              | 1.0(17)  |                  |                  | 2.1(17)  |
| plant genera/transect 10 11 11 7<br>plant species/transect 12 13 11 7                                    | Sea urchin                       |          |                  |                  |          |
| plant species/transect 12 13 11 7                                                                        | Sponge                           |          |                  | 4.2(33)          |          |
| plant species/transect 12 13 11 7                                                                        | Number of plant genera/transect  | 10       | 11               | 11               | 7        |
|                                                                                                          | Number of plant species/transect |          | 13               | 11               | 7        |
| ercent plant coverage 23.8 38.4 25.9                                                                     |                                  |          | 11<br>13<br>38.4 | 11<br>11<br>25.9 |          |
|                                                                                                          | otal number of plant species 23  |          |                  |                  |          |

## CORALS AND A DESCRIPTION OF THE STUDY AREA

### by

## Richard H. Randall

#### Introduction

Reef-building scleractinian, octocorallian, and hydrozoan corals are sessile invertebrates with potentially long life spans and distribution patterns that depend upon the particular setting found from one habitat to Their stony calcium carbonate skeletons are major contributors to another. both in situ framework and detrital reef deposits in shoal-water fringing reef environments. Characteristic coral communities develop in response to variable environmental conditions found from one habitat to another, ranging from conditions completely unfavorable for corals to optimum conditions where corals are the dominant organisms in the community. Corals are sensitive to many environmental variables, particularly suspended materials in the water column, sediment accumulation on the substrate upon which they grow, water currents, sea water dilution from surface drainage and groundwater discharge, temperature fluctuations, emersion on shallow platforms during low tides, and various forms of pollution from toxic substances and thermal, storm drain, and sewage discharges. Because of their sensitivity to these environmental factors, corals can be useful as indicator organisms which reflect the quality of the environment. Assessment of the present coral communities on the shoalwater reef habitats between Puntan Unai Obyan and Puntan Naftan will establish baseline data from which changes in the quality of the reef environment can be determined or predicted. These data will be useful in establishing sound planning practices and management of this reef area in relation to present and future development.

The principal objectives of this part of the study were to determine the distribution and community structure of corals within the study area and to present a brief physiographic description of the reefs and coastal environment.

#### Methods

Coral communities were analyzed along transects by using the plotless point-centered or point-quarter technique of Cottam et al. (1953). Five transects were established within the study area by placing a plastic surveyor's tape along the bottom on the reef flat platform and seaward reef front slope locations, as shown in Figures 1 and 2, pp. 4 and 5. Sampling points were then established by throwing a geology hammer from the surface at five-meter intervals along the length of each transect. Throws along Transects A-E on the reef flat platform were made by standing at each fivemeter interval facing Puntan Naftan and tossing the hammer over one's shoulder into a five-meter-wide corridor along the Puntan Obyan side of the transect line. Throws along Transects A-D on the reef front slope were made by swimming over each five-meter interval facing toward the sea and tossing the hammer over one's back into a five-meter-wide corridor on the landward side of the transect line. Where the thrown hammer came to a rest, a sample point was established at the intersection of the hammer handle and head. Four quadrants were then formed around the point by establishing one axis along the hammer handle and another at right angles to it along the hammer head. The coral nearest the sample point in each quadrant was located and its specific name, size (diameter or maximum length and width), and the distance from the center of the corallum to the sample point were recorded. From these point-quarter data the following calculations were used to estimate community structure parameters:

unit anas

| 1 Teach density of all seconds a                                                      | unit area                                            |
|---------------------------------------------------------------------------------------|------------------------------------------------------|
| 1. Total density of all species =                                                     | (mean point-to-colony distance) <sup>2</sup>         |
| 2. Relative density = $\frac{\text{individuals of a}}{\text{total individuals of a}}$ | species X 100<br>Il species                          |
| 3. Density = relative density of a species 100                                        | X total density of all species                       |
| 4. Total percent coverage = total density of all species                              | X average coverage value<br>for all species          |
| 5. Percent coverage = density of a species                                            | X average coverage value<br>for the species          |
| 6. Relative percent coverage = <u>Percent cov</u><br>Total cover                      | verage for a species X 100<br>rage for all species   |
| 7. Frequency = <u>Number of points at which</u><br>Total number of                    | <u>h a species occurs</u> X 100<br>points            |
| 8. Relative frequency = $\frac{\text{Frequency value}}{\text{Total of frequency}}$    | alue for a species<br>y values for all species X 100 |
| 9. Importance value = Relative + relative<br>density cover                            | percent <sub>+</sub> relative<br>rage frequency      |
| Colony size distribution data $(Y = a)$                                               | rithmetic mean, s = standard                         |

Colony size distribution data (Y = arithmetic mean, s = standard deviation, and w = size range) were also calculated from the point-quarter data.

### Physiographic Description of the Study Site

The coastal region between Puntan Obyan and Puntan Naftan (Figs. 1 and 2, pp. 4-5) consists of rugged steep slopes and cliffs developed along the seaward margins of low limestone terraces. A halophytic-xerophytic stunted scrub vegetation occupies much of the exposed, solution-pitted limestone surfaces of the slope and cliff faces. Bioclastic beach deposits of reef origin up to 30 meters wide and 900 meters long are developed along the shoreline between Puntan Obyan and Transect B. Smaller patches of beach deposits intermittently interrupt the remaining rocky shoreline between Transect B and Puntan Naftan. Beachrock forms conspicuous outcrops at a number of places along the shoreline, particularly in the vicinity of Transects A and B.

Except for a 400-meter stretch of sea cliffs located between Puntan Naftan and Transect D, the entire costal area of the study site is bordered by a narrow, contiguous fringing reef platform. The reef platform gradually narrows in width from 115 meters near Transect E to a mere fringe 40 meters wide at Transect D. About 200 meters southeast of Transect D, the reef platform disappears altogether along the sea cliffs of Puntan Naftan. Physiographic structure of the reef platform is fairly uniform along its length, consisting of an inner deeper part, ranging in width from 20 meters at Transect D to 40 meters at Transect A, and an outer shallower part, ranging in width from 20 meters at Transects C and D to 50 meters at Transect E. Because of these elevation differences, the reef platform can be divided into two somewhat distinct zones, an outer one that becomes very shallow or even emergent at places during low spring tides and an inner one that retains a shallow moat of water at most places during such times. The outer fringe of the reef flat platform dips downward very gently in a seaward direction forming a wave-washed zone commonly referred to as the reef margin zone. Algal ridge development was conspicuously absent along the entire platform margin. During our fieldwork period, heavy wave assault prevented us from assessing the reef margin zone. Seaward of the reef margin, the downward dip of the platform increases rather abruptly forming the reef front slope zone, which was assessed along the 5-8 meter depth contour during the fieldwork period. A somewhat irregularly-spaced buttress and channel system is developed along most parts of the reef slope within the study area, giving it a topographic relief of up to five meters from channel floors to buttress ridge tops.

Sediment distribution within the study area was somewhat patchy or absent, as expected in reef habitats such as this, where high wave assault and strong currents are prevalent. The outer reef flat platform surface was for the most part swept free of sediment except in local holes and depressions where some coarse sand and rubble accumulation was found. Sediment accumulation was somewhat more prevalent in the inner reef flat platform zone, but even so, was generally patchy in distribution or confined to a layer up to two centimeters thick that was trapped in algal turf communities. Sediment accumulation on the reef front zone was restricted to the floors of channels, holes, and depressions.

#### Coral Distribution and Community Structure

Quantitative data of the coral species encountered from the point-quarter analysis are presented in Table 1. The coral species encountered during the point-quarter analysis indicate the predominant and common species along the transects. The presence of uncommon and rare species, not encountered during the point-quarter analysis, was determined for each transect by making tenminute snorkel observations along each side of the transect line within the various zones discriminated. An overall list of species is compiled for each transect zone by combining those encountered during the point-quarter analysis (Table 1) with those from snorkel observations in Table 2.

A cumulative total of 72 coral species representing 12 families and 27 genera were recorded from the study area (Table 2). Of the 72 species, 7 were common to all 5 transects, and, of the remaining 65 species, 12 were common to 4 transects, 13 were common to 3 transects, 17 were common to 2 transects, and 23 were found only at single transect locations. Species richness along Transects A-D (all zones combined) ranged from 45 species at Transect C to 36 species at Transect A. Investigations were restricted to only the reef flat platform zones at Transect E, resulting in only 16 species being recorded from there. Within individual reef zones species richness ranged from 2 to 12 in the inner reef flat, 4 to 22 in the outer reef flat, and 20 to 43 in the reef front slope. Coral density (corals/m<sup>2</sup>) ranged from 0.20 to 0.55 in the inner reef flat zones, 0.59 to 3.83 in the outer reef flat zones, and 9.25 to 14.35 in the reef front slope zones. Percentage of substrate coverage by corals ranged from 0.25 to 0.94 in the inner reef flat zones, 0.35 to 5.29 in the outer reef flat zones, and 2.82 to 18.89 in the reef front slope zones. In regard to mean coral colony size distribution, largest-sized corals were found in the inner reef flat zones (7.6 to 13.5 cm diam.), intermediate-sized corals on the outer reef flat zones (6.6 to 11.4 cm diam.), and smallest-sized corals on the reef front slope zones (5.6 to 9.1 cm diam.).

In general, values of coral density, percentage of substrate coverage, and species richness were lowest in the reef flat platform zones and highest in the reef front slope zone, whereas mean colony size was smallest in the reef front zones and slightly larger in the reef flat platform zones. Reef platform exposure and elevated water temperatures during low spring tides when water circulation is minimal appear to be the most probable environmental factors responsible for the poor coral development observed in the reef flat platform zones. In relation to community structure on the reef front slope, it should be mentioned that the coral communities there were subject to intense Acanthaster planci predation several years ago (V. Aldan, CNMI Coastal Resources Management, pers. comm.) and are now undergoing recovery. This former predation was quite evident in the presence of numerous dead algalcovered coral colonies, particularly on the lower reef front slope. It was also quite apparent that A. planci predation was much less intense in the more wave-assaulted shallower upper reef front slope zones, resulting in somewhat of a coral refugia there. This upper reef front slope refugia plus lower slope recovery, apparent by the presence of abundant small recruits and rejuvenating spats that survived initial predation, account for the relatively high values of species richness, density, and percentage of substrate coverage recorded there.

# Literature Cited

Cottam, G., J. T. Curtis, and B. W. Hale. 1953. Some sampling characteristics of a population of randomly dispersed individuals. Ecology 34:731-757.

| Transect No.,<br>Reef Zone, and<br>Coral Species                                                                                                                                                                                                                                                                                                          |                                  | lony                                                                                 | istribu<br>diamete<br>s   | ution<br>ers in cm)<br>W                                   | Frequency                                                                    | Relative<br>Frequency                                                          | Density<br>(per π <sup>2</sup> )                                             | Relative<br>Density                                                                     | Percent<br>Cover                                                                                         | Relative<br>Percent<br>Cover                                                                   | Importance<br>Value                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Transect A<br>Inner Reef Flat<br>(0-40 meters)                                                                                                                                                                                                                                                                                                            |                                  |                                                                                      |                           |                                                            |                                                                              |                                                                                |                                                                              |                                                                                         |                                                                                                          |                                                                                                |                                                                                                    |
| Porites (P.) <u>lutea</u><br><u>Goniastrea retiformis</u><br><u>Pocillopora damicornis</u><br><u>Pocillopora setchelli</u><br><u>Porites (P.) australiensis</u><br><u>Pavona sp. 3</u><br><u>Acropora cerealis</u><br><u>Porites (P.) lichen</u><br><u>Acropora azurea</u><br><u>Favia favus</u><br><u>Montipora lobulata</u><br><u>Stylophora mordax</u> | 95<br>33<br>11<br>11<br>11<br>11 | 15.7<br>10.9<br>13.4<br>5.6<br>18.9<br>8.7<br>7.5<br>5.7<br>3.9<br>3.5<br>4.0<br>4.0 | 18.0<br>4.7<br>7.0<br>3.4 | 5.9-17.1<br>5.3-17.5                                       | 0.56<br>0.44<br>0.33<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11<br>0.11 | 24.00<br>18.86<br>14.14<br>4.71<br>4.71<br>4.71<br>4.71<br>4.71<br>4.71<br>4.7 | 0.09<br>0.05<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | 32.14<br>17.86<br>10.71<br>3.57<br>3.57<br>3.57<br>3.57<br>3.57<br>3.57<br>3.57<br>3.57 | 0.395<br>0.011<br>0.052<br>0.009<br>0.029<br>0.006<br>0.005<br>0.003<br>0.001<br>0.001<br>0.001<br>0.001 | 76.85<br>2.14<br>10.12<br>1.75<br>5.64<br>1.17<br>0.97<br>0.58<br>0.19<br>0.19<br>0.19<br>0.19 | 132.99<br>38.86<br>34.97<br>17.17<br>13.92<br>9.45<br>9.25<br>8.86<br>8.47<br>8.47<br>8.47<br>8.47 |
| Totals:                                                                                                                                                                                                                                                                                                                                                   | 28                               | 11.0                                                                                 | 11.3                      | 1.4-48.8                                                   |                                                                              |                                                                                | 0.28                                                                         |                                                                                         | 0.514                                                                                                    |                                                                                                |                                                                                                    |
| Transect A<br>Outer Reef Flat<br>(40-75 meters)                                                                                                                                                                                                                                                                                                           |                                  |                                                                                      |                           |                                                            |                                                                              |                                                                                |                                                                              |                                                                                         |                                                                                                          |                                                                                                |                                                                                                    |
| <u>Porites (P.) lutea</u><br><u>Goniastrea retiformis</u><br><u>Acropora digitifera</u><br>Pocillopora <u>setchelli</u><br><u>Porites (P.) australiensis</u><br><u>Acropora cerealis</u><br><u>Acropora ocellata</u><br><u>Montipora elschneri</u>                                                                                                        | 14<br>4<br>3<br>1<br>1<br>1      | 7.7<br>9.9<br>8.0<br>4.1<br>10.2<br>5.9<br>5.5<br>4.0                                | 5.5                       | 2.4-20.9<br>4.0-16.9<br>4.2-11.3<br>2.0-5.5<br>-<br>-<br>- | 0.86<br>0.43<br>0.29<br>0.14<br>0.14<br>0.14<br>0.14                         | 33.44<br>16.72<br>16.72<br>11.28<br>5.44<br>5.44<br>5.44<br>5.44               | 1.23<br>0.35<br>0.26<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                 | 50.00<br>14.29<br>10.71<br>10.71<br>3.57<br>3.57<br>3.57<br>3.57                        | 0.775<br>0.336<br>0.150<br>0.040<br>0.072<br>0.024<br>0.021<br>0.021                                     | 54.23<br>23.51<br>10.50<br>2.80<br>5.04<br>1.68<br>1.47<br>0.77                                | 137.67<br>54.52<br>37.93<br>24.79<br>14.05<br>10.69<br>10.48<br>9.78                               |
| Totals:                                                                                                                                                                                                                                                                                                                                                   | 28                               | 7.5                                                                                  | 4.3                       | 2.0-20.9                                                   |                                                                              |                                                                                | 2.46                                                                         |                                                                                         | 1.429                                                                                                    |                                                                                                |                                                                                                    |
| Transect A<br>Reef Front Slope<br>(depth 4-6 meters)                                                                                                                                                                                                                                                                                                      |                                  |                                                                                      |                           |                                                            |                                                                              | -                                                                              | 10.47                                                                        |                                                                                         |                                                                                                          |                                                                                                |                                                                                                    |
| Millepora platyphylla                                                                                                                                                                                                                                                                                                                                     | 2                                | 29.1                                                                                 | 28.8                      | 8.7-49.4                                                   | 0.20                                                                         | 6.45                                                                           | 0.72                                                                         | 5.00                                                                                    | 7.07                                                                                                     | 42.59                                                                                          | 54.04                                                                                              |

Table 1. Coral size distribution, frequency and relative frequency, density and relative density, percent coverage and relative percent coverage, and importance values for coral species at Transects A through E. Species are listed in order of their importance values.

Table 1. Continued.

· ·

| Transect No.,<br>Reef Zone, and<br>Coral Species | 1.000 | e Distrib<br>ny diamet<br>Y s | ution<br>ers in cm)<br>W | Frequency    | Relative<br>Frequency | Density<br>(per m <sup>2</sup> ) | Relative<br>Density | Percent<br>Cover | Relative<br>Percent<br>Cover | Importance<br>Value |
|--------------------------------------------------|-------|-------------------------------|--------------------------|--------------|-----------------------|----------------------------------|---------------------|------------------|------------------------------|---------------------|
| Acropora humilis<br>Leptoria phrygia             |       |                               | 22.0-26.5                | 0.20         | 6.45<br>12.90         | 0.72                             | 5.00                | 3.33             | 20.06                        | 31.51               |
| Montipora elschneri                              |       | .9 3.8                        |                          | 0.30         | 9.68                  | 1.43                             | 10.00               | 1.01             | 6.08                         | 25.76               |
| Montipora verrilli                               |       |                               | 2.4-9.9                  | 0.30         | 9.68                  | 1.79                             | 12.50               | 0.49             | 2.95                         | 25.13               |
| Pocillopora verrucosa                            |       | .0 0.7                        | 4.0-5.5                  | 0.30         | 9.68                  | 1.43                             | 10.00               | 0.28             | 1.69                         | 21.37               |
| Acropora nasuta                                  |       |                               | 4.5-6.0                  | 0.30         | 9.68                  | 1.07                             | 7.50                | 0.24             | 1.45                         | 18.63               |
| Millepora tuberosa                               |       |                               | 4.9-8.8                  | 0.10         | 3.23                  | 1.07                             | 7.50                | 0.41             | 2.47                         | 13.20               |
| Goniopora tenuidens                              |       | - 9.                          |                          | 0.10         | 3.23                  | 0.36                             | 2.50                | 1.11             | 6.69                         | 12.42               |
| Montipora hoffmeisteri                           |       |                               | 12.4-18.3                | 0.10         | 3.23                  | 0.36                             | 5.00                | 0.69             | 4.16                         | 12.39               |
| Montastrea curta                                 |       | .2 1.4                        | 3.2.5.2                  | 0.20         | 6.45                  | 0.72                             | 5.00                | 0.10             | 0.60                         | 12.05               |
| Favia stelligera<br>Stylophora mordax            |       | .2 1.6                        | 4.0-6.3                  | 0.10<br>0.10 | 3.23<br>3.23          | 0.36                             | 2.50                | 0.59             | 3.55                         | 9.28<br>9.19        |
| Goniastrea retiformis                            |       | .4 -                          | 4.0-0.3                  | 0.10         | 3.23                  | 0.72                             | 2.50                | 0.51             | 3.07                         | 8,80                |
| Pocillopora eydouxi                              |       | .5 -                          |                          | 0.10         | 3.23                  | 0.36                             | 2.50                | 0.12             | 0.72                         | 6.45                |
| Leptastrea purpurea                              |       | .6 -                          | -                        | 0.10         | 3.23                  | 0.36                             | 2.50                | 0.10             | 0.60                         | 6.33                |
| Porites (P.) Lichen                              |       | .5 -                          | -                        | 0.10         | 3.23                  | 0.36                             | 2.50                | 0.09             | 0.54                         | 6.27                |
| Totals:                                          | 40 9  | .0 8.6                        | 1.4-49.4                 |              |                       | 13.98                            |                     | 16.60            |                              |                     |
| Transect B<br>Inner Reef Flat<br>(0-35 meters)   |       |                               |                          |              |                       |                                  |                     |                  |                              |                     |
| Porites (P.) lutea                               | 18 11 | .1 5.2                        | 5.3-20.8                 | 0.86         | 50.29                 | 0.20                             | 75.00               | 0.24             | 86.33                        | 211.62              |
| Porites (P.) solida                              | 1 17  |                               | •                        | 0.14         | 8.19                  | 0.01                             | 4.17                | 0.03             | 10.79                        | 23.15               |
| Acropora digitifera                              |       | .0 0.3                        | 2.8-3.2                  | 0.29         | 16.96                 | 0.02                             | 8.33                | 0.002            | 0.72                         | 13.08               |
| Acropora ocellata                                |       | .3 -                          | •                        | 0.14         | 8.19                  | 0.01                             | 4.17                | 0.002            | 0.72                         | 13.08               |
| Pocillopora setchelli                            |       | .5 -                          | -                        | 0.14         | 8.19                  | 0.01                             | 4.17                | 0.002            | 0.72                         | 13.08               |
| Psammocora contigua                              | 1 5   | .3 -                          | 2. <b>8</b> .7           | 0.14         | 8.19                  | 0.01                             | 4.17                | 0.002            | 0.72                         | 13.08               |
| Totals:                                          | 24 9  | .9 5.6                        | 2.8-20.8                 |              |                       | 0.26                             |                     | 0.278            |                              | 4                   |
| Transect B<br>Outer Reef Flat<br>(35-75 meters)  |       |                               |                          |              |                       |                                  |                     |                  |                              |                     |
| Porites (P.) lutea                               | 10 9. | 4 4.6                         | 3.5-17.4                 | 0.63         | 27.63                 | 0.18                             | 31.25               | 0.148            | 42.65                        | 101.53              |
| Goniastrea retiformis                            | 5 12. |                               | 7.5-21.0                 | 0.88         | 16.67                 | 0.09                             | 15.63               | 0.138            | 39.77                        | 72.07               |
| Acropora digitifera                              | 11 4. |                               | 2.8-8.8                  | 0.63         | 27.63                 | 0.20                             | 34.38               | 0.032            | 9.22                         | 71.23               |
| Acropora cerealis                                | 2 3.  |                               | 3.5-3.5                  | 0.25         | 10.96                 | 0.04                             | 6.25                | 0.003            | 0.86                         | 18.07               |
| Pocillopora setchelli                            | 2 8.  |                               | 6.9-9.2                  | 0,13         | 5.70                  | 0.04                             | 6.25                | 0.019            | 5.48                         | 17.43               |

-

Table 1. Continued.

| Transect No.,<br>Reef Zone, and<br>Coral Species     |     |            | istribu<br>liamete<br>s | ntion<br>ers in cm)<br>W | Frequency    | Relative<br>Frequency | Density<br>(per m <sup>2</sup> ) | Relative<br>Density | Percent<br>Cover | Relative<br>Percent<br>Cover | Importance<br>Value |
|------------------------------------------------------|-----|------------|-------------------------|--------------------------|--------------|-----------------------|----------------------------------|---------------------|------------------|------------------------------|---------------------|
| <u>Pocillopora damicornis</u><br>Pocillopora eydouxi | 1   | 5.5<br>4.9 | -                       | •                        | 0.13<br>0.13 | 5.70<br>5.70          | 0.02<br>0.02                     | 3.13<br>3.13        | 0.004<br>0.003   | 1.15<br>0.86                 | 9.98<br>9.98        |
| Totals:                                              | 32  | 7.4        | 4.7                     | 2.8-21.0                 |              |                       | 0.59                             |                     | 0.347            |                              |                     |
| Transect B<br>Reef Front Slope<br>(depth 4-6 meters) |     |            |                         |                          |              |                       |                                  |                     |                  |                              |                     |
| <u>Stylophora</u> mordax                             | 4   | 7.7        |                         | 2.0-24.4                 | 0.40         | 10.81                 | 0.93                             | 10.00               | 1.11             | 39.36                        | 60.17               |
| <u>Goniastrea</u> edwardsi                           | 6   | 4.1        |                         | 2.4-7.5                  | 0.50         | 13.51                 | 1.39                             | 15.00               | 0.21             | 7.45                         | 35.96               |
| Galaxea fascicularis                                 | 4   | 5.6        | 2.0                     | 4.0-8.5                  | 0.30         | 8.11                  | 0.93                             | 10.00               | 0.25             | 8.87                         | 26.98               |
| Platygyra pini                                       | 3   | 4.7        | 1.4                     | 3.0-5.5                  | 0.30         | 8.11                  | 0.70                             | 7.50                | 0.13             | 4.61                         | 20.22               |
| Pavona sp. 3<br>Porites (P.) lichen                  | 32  | 4.6        | 1.1                     | 3.5-5.7                  | 0.20         | 5.41                  | 0.70                             | 7.50                | 0.12             | 4.26                         | 17.17<br>16.08      |
| Coniastrea retiformis                                | 2   | 4.9        | 3.0                     | 4.2.8.7.0                | 0.20         | 5.41<br>5.41          | 0.46                             | 5.00<br>5.00        | 0.16<br>0.10     | 3.55                         | 13.96               |
| avites russelli                                      | 2   | 4.3        |                         | 3.0-4.2                  | 0.20         | 5.41                  | 0.46                             | 5.00                | 0.07             | 2.48                         | 12.89               |
| Pocillopora verrucosa                                | 2   | 4.1        | 0.1                     | 4.0-4.2                  | 0.20         | 5.41                  | 0.46                             | 5.00                | 0.06             | 2.13                         | 12.54               |
| eptastrea purpurea                                   | 1   | 8.8        | 0.1                     | 4.0-4.2                  | 0.20         | 2.70                  | 0.40                             | 2.50                | 0.14             | 4.96                         | 10.16               |
| eptoria phrygia                                      | i   | 7.3        |                         |                          | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.14             | 3.55                         | 8.75                |
| fontipora verrilli                                   | 1   | 6.0        |                         |                          | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.07             | 2.48                         | 7.68                |
| Porites (P.) australiensis                           | 1   | 6.0        |                         | -                        | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.07             | 2.48                         | 7.68                |
| Acropora digitifera                                  | i i | 5.0        | -                       | -                        | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.07             | 1.77                         | 6.97                |
| favia pallida                                        | i   | 4.9        | •                       |                          | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.04             | 1.42                         | 6.62                |
| Favia matthai                                        | i   | 4.9        | -                       | _                        | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.04             | 1.42                         | 6.62                |
| Iontastrea curta                                     | i   | 3.9        |                         |                          | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.03             | 1.06                         | 6.26                |
| <u>Canthastrea</u> echinata                          | 1   | 3.5        | -                       | -                        | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.02             | 0.71                         | 5.91                |
| avia stelligera                                      | i   | 3.0        | 2                       | •                        | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.02             | 0.71                         | 5.91                |
| Fungia (P.) scutaria                                 | 1   | 3.5        |                         | _                        | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.02             | 0.71                         | 5.91                |
| Dulaphyllia crispa                                   | i   | 2.4        | 2                       |                          | 0.10         | 2.70                  | 0.23                             | 2.50                | 0.01             | 0.35                         | 5.55                |
| Totals:                                              | 40  | 5.1        | 3.6                     | 2.0-24.4                 |              |                       | 9.25                             |                     | 2.82             |                              |                     |
| Fransect C<br>Inner Reef Flat<br>(0-25 meters)       |     |            |                         | 9 <u>776</u>             |              |                       |                                  |                     |                  |                              |                     |
| Porites (P.) lutea                                   |     | 10.1       |                         | 2.4-19.6                 | 0.50         | 42.86                 | 0.19                             | 55.56               | 0.20             | 47.62                        | 146.04              |
| Porites (P.) australiensis                           |     | 21.6       |                         | 20.0-23.1                | 0.17         | 14.57                 | 0.04                             | 11.11               | 0.14             | 33.33                        | 59.01               |
| ioniastrea retiformis                                | 4   | 7.6        | 5.3                     | 2.4-13.4                 | 0.17         | 14.57                 | 0.07                             | 22.22               | 0.05             | 11.90                        | 48.69               |

### Table 1. Continued. -----

\_

| Transect No.,<br>Reef Zone, and<br>Coral Species              |        | Size Di<br>blony c<br>Y |             | ution<br>ers in cm)<br>W | Frequency    | Relative<br>Frequency | Density<br>(per m <sup>2</sup> ) | Relative<br>Density | Percent<br>Cover | Relative<br>Percent<br>Cover | Importance<br>Value |
|---------------------------------------------------------------|--------|-------------------------|-------------|--------------------------|--------------|-----------------------|----------------------------------|---------------------|------------------|------------------------------|---------------------|
| Pocillopora setchelli<br>Pocillopora damicornis               | 1<br>1 | 12.4<br>7.1             |             |                          | 0.17<br>0.17 | 14.57<br>14.57        | 0.02                             | 5.56<br>5.56        | 0.02             | 4.76                         | 24.89<br>22.51      |
| Totals:                                                       | 18     | 10.8                    | 6.4         | 2.4.23.1                 |              |                       | 0.34                             |                     | 0.42             |                              | 5 M. F. C           |
| Transect C<br>Outer Reef Flat<br>(25-45 meters)               |        |                         |             |                          |              |                       |                                  |                     |                  |                              |                     |
| Porites (P.) lutea                                            | 5      | 10.0                    |             | 4.6-14.7                 | 0.75         | 33.33                 | 0.47                             | 31.25               | 0.41             | 64.06                        | 128.64              |
| Acropora azurea                                               | 8      | 4.3                     |             | 2.4-6.0                  | 0.75         | 33.33                 | 0.76                             | 50.00               | 0.12             | 18.75                        | 102.08              |
| <u>Goniastrea</u> <u>retiformis</u><br>Pocillopora damicornis | 2      | 6.2<br>8.4              | 0.2         | 6.0-6.3                  | 0.50         | 22.22                 | 0.19                             | 12.50<br>6.25       | 0.06             | 9.38<br>7.81                 | 44.10<br>25.17      |
| Pocificopora damicorrits                                      | -1.    | 0.4                     |             |                          | 0.25         | 11.11                 | 0.09                             | 0.23                | 0.05             | 7.01                         | 23.11               |
| Totals:                                                       | 16     | 6.6                     | 3.4         | 2.4-14.7                 |              |                       | 1.51                             |                     | 0.64             |                              |                     |
| Transect C<br>Reef Front Slope<br>(depth 4-6 meters)          | -      | 20.0                    | 2/ 0        |                          | A /A         | 10.01                 |                                  | 13 50               | 47 / 7           | 74 74                        | 0/ /2               |
| <u>Millepora platyphylla</u><br><u>Stylophora mordax</u>      | 5      | 28.9                    | 24.0<br>2.6 | 2.4-54.0<br>2.0-7.9      | 0.40         | 10.81<br>10.81        | 1.32                             | 12.50<br>12.50      | 13.47<br>0.21    | 71.31                        | 94.62               |
| Leptoria phrygia                                              | 4      | 5.9                     |             | 3.5-8.5                  | 0.30         | 8.11                  | 1.06                             | 10.00               | 0.33             | 1.75                         | 19.86               |
| Psammocora digitata                                           | 1      | 32.9                    | -           |                          | 0.10         | 2.70                  | 0.26                             | 2.50                | 2.26             | 11.96                        | 17.16               |
| Porites (P.) lutea                                            | 2      | 6.6                     | 1.0         | 5.9-7.3                  | 0.20         | 5.41                  | 0.53                             | 5.00                | 0.19             | 1.01                         | 11.42               |
| Acropora monticulosa                                          | 2      | 5.0                     | 2.8         | 2.0-7.0                  | 0.20         | 5.41                  | 0.53                             | 5.00                | 0.12             | 0.64                         | 11.05               |
| Acropora nasuta                                               | 2      | 5.0                     |             | 4.0-6.0                  | 0.20         | 5.41                  | 0.53                             | 5.00                | 0.11             | 0.58                         | 10.99               |
| <u>Pocillopora elegans</u><br>Goniastrea retiformis           | 1      | 22.8                    | 0.6         | 4.0-4.9                  | 0.10         | 2.70                  | 0.26                             | 2.50                | 1.09             | 5.77                         | 10.97               |
| Pocillopora verrucosa                                         | 1      | 12.8                    | 0.0         | 4.0-4.9                  | 0.20         | 5.41<br>2.70          | 0.53                             | 5.00<br>2.50        | 0.08             | 0.42<br>1.80                 | 10.83<br>7.00       |
| Pavona varians                                                | i      | 9.4                     | -           | -                        | 0.10         | 2.70                  | 0.26                             | 2.50                | 0.18             | 0.95                         | 6.15                |
| Acropora surculosa                                            | 1      | 6.5                     | -           | -                        | 0.10         | 2.70                  | 0.26                             | 2.50                | 0.09             | 0.48                         | 5.68                |
| Echinopora lamellosa                                          | 1      | 5.9                     | -           | ×                        | 0.10         | 2.70                  | 0.26                             | 2.50                | 0.07             | 0.37                         | 5.57                |
| Pavona duerdeni                                               | 1      | 5.3                     | -           |                          | 0.10         | 2.70                  | 0.26                             | 2.50                | 0.06             | 0.32                         | 5.52                |
| Favia favus                                                   | 1      | 4.9                     |             | -                        | 0.10         | 2.70                  | 0.26                             | 2.50                | 0.05             | 0.26                         | 5.46                |
| <u>Goniastrea</u> <u>edwardsi</u><br>Galaxea fascicularis     | 1      | 4.9<br>3.9              |             |                          | 0.10         | 2.70                  | 0.26                             | 2.50                | 0.05             | 0.26                         | 5.46                |
| Acropora digitifera                                           | 1      | 3.0                     |             |                          | 0.10<br>0.10 | 2.70 2.70             | 0.26                             | 2.50                | 0.03             | 0.16<br>0.11                 | 5.36<br>5.31        |
| Cyphastrea microphthalma                                      | 1      | 3.0                     | -           | -                        | 0.10         | 2.70                  | 0.26                             | 2.50                | 0.02             | 0.11                         | 5.31                |
| Favia matthai                                                 | i      | 2.8                     |             | -                        | 0.10         | 2.70                  | 0.26                             | 2.50                | 0.02             | 0.11                         | 5.31                |
| Favia stelligera                                              | 1      | 3.0                     | -           | -                        | 0.10         | 2.70                  | 0.26                             | 2.50                | 0.02             | 0.11                         | 5.31                |

-

Table 1. Continued.

| Transect No.,<br>Reef Zone, and<br>Coral Species                                                                                                                                     |                                      |                                                         |                 | ution<br>ers in cm)<br>⊌                    | Frequency                                                    | Relative<br>Frequency                                            | Density<br>(per m <sup>2</sup> )                             | Relative<br>Density                                              | Percent<br>Cover                                             | Relative<br>Percent<br>Cover                                    | Importance<br>Value                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------|-----------------|---------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| Leptastrea purpurea<br>Montastrea curta<br>Montipora verrucosa<br>Pavona sp. 3                                                                                                       | 1 1 1                                | 2.8<br>3.5<br>3.5<br>3.5                                | :               | -                                           | 0.10<br>0.10<br>0.10<br>0.10                                 | 2.70<br>2.70<br>2.70<br>2.70<br>2.70                             | 0.26<br>0.26<br>0.26<br>0.26                                 | 2.50<br>2.50<br>2.50<br>2.50                                     | 0.02<br>0.02<br>0.02<br>0.02                                 | 0.11<br>0.11<br>0.11<br>0.11                                    | 5.31<br>5.31<br>5.31<br>5.31                                         |
| Totals:                                                                                                                                                                              | 40                                   |                                                         | 12.2            | 2.0-54.0                                    |                                                              | 2110                                                             | 10.50                                                        |                                                                  | 18.89                                                        |                                                                 |                                                                      |
| Transect D<br>Inner Reef Flat<br>(0-20 meters)                                                                                                                                       |                                      |                                                         |                 |                                             |                                                              |                                                                  | . (*******                                                   |                                                                  |                                                              |                                                                 |                                                                      |
| <u>Porites</u> (P.) <u>lutea</u><br>Porites (P.) <u>australiensis</u>                                                                                                                | 11<br>1                              | 13.9<br>8.8                                             | 6.4             | 5.9-24.7                                    | 0.75<br>0.25                                                 | 75.00<br>25.00                                                   | 0.50<br>0.05                                                 | 91.67<br>8.33                                                    | 0.91<br>0.03                                                 | 96.81<br>3.19                                                   | 263.48<br>36.52                                                      |
| Totals:                                                                                                                                                                              | 12                                   | 13.5                                                    | 6.3             | 5.9-24.7                                    |                                                              |                                                                  | 0.55                                                         |                                                                  | 0.94                                                         |                                                                 |                                                                      |
| Transect D<br>Outer Reef flat<br>(20-40 meters)                                                                                                                                      |                                      |                                                         |                 |                                             |                                                              |                                                                  |                                                              |                                                                  |                                                              | <b>-</b> 0. (4) ( <sup>*</sup>                                  |                                                                      |
| Acropora digitata<br>Pocillopora setchelli<br>Acropora monticulosa<br>Acropora azurea<br>Acropora squarrosa<br>Goniastrea retiformis<br>Leptastrea purpurea<br>Acanthastrea echinata | 4<br>3<br>1<br>3<br>2<br>1<br>1<br>1 | 10.8<br>9.7<br>32.4<br>7.1<br>9.7<br>23.0<br>7.5<br>6.0 |                 | 5.0 15.1<br>7.0-11.2<br>4.9-11.0<br>9.4-9.9 | 0.50<br>0.75<br>0.25<br>0.50<br>0.25<br>0.25<br>0.25<br>0.25 | 15.38<br>23.08<br>7.69<br>15.38<br>15.38<br>7.69<br>7.69<br>7.69 | 0.95<br>0.72<br>0.24<br>0.72<br>0.48<br>0.24<br>0.24<br>0.24 | 25.00<br>18.75<br>6.25<br>18.75<br>12.50<br>6.25<br>6.25<br>6.25 | 0.96<br>0.52<br>1.97<br>0.33<br>0.35<br>0.99<br>0.10<br>0.07 | 18.15<br>9.83<br>37.24<br>6.24<br>6.62<br>18.71<br>1.89<br>1.32 | 58.53<br>51.66<br>51.18<br>40.37<br>34.50<br>32.65<br>15.83<br>15.26 |
| Totals:                                                                                                                                                                              | 16                                   | 11.4                                                    | 7.2             | 4.9-32.4                                    |                                                              |                                                                  | 3.83                                                         |                                                                  | 5.29                                                         |                                                                 |                                                                      |
| Transect D<br>Reef Front Slope<br>(depth 4-6 meters)                                                                                                                                 | 18                                   |                                                         |                 |                                             | ~                                                            |                                                                  |                                                              |                                                                  |                                                              |                                                                 |                                                                      |
| Favia stelligera<br>Millepora platyphylla<br>Goniastrea retiformis<br>Leptoria phrygia<br>Acanthastrea echinata                                                                      | 6<br>1<br>5<br>3<br>4                | 6.8<br>25.8<br>5.1<br>7.5<br>4.0                        | -<br>3.6<br>7.8 | 2.4-20.9<br>1.4-9.0<br>2.4-16.5<br>3.5-4.6  | 0.40<br>0.10<br>0.40<br>0.20<br>0.30                         | 12.50<br>3.13<br>12.50<br>6.25<br>9.38                           | 2.15<br>0.36<br>1.79<br>1.07<br>1.43                         | 15.00<br>2.50<br>12.50<br>7.50<br>10.00                          | 1.49<br>1.88<br>0.51<br>0.82<br>0.18                         | 23.65<br>29.89<br>8.11<br>13.04<br>2.86                         | 51.19<br>35.52<br>33.11<br>26.79<br>22.24                            |

Table 1. Continued.

| Transect No.,<br>Reef Zone, and<br>Coral Species                                                                                                                                                                                                                                    |                                                     | lony o                                                       | istribu<br>diamete<br>s | ution<br>ers in cm)<br>W                               | Frequency                                            | Relative<br>Frequency                                                   | Density<br>(per m <sup>2</sup> )                                     | Relative<br>Density                                             | Percent<br>Cover                                                              | Relative<br>Percent<br>Cover                                   | Importance<br>Value                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|-------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|
| Montipora verrilli                                                                                                                                                                                                                                                                  | 3                                                   | 4.9                                                          | 2.6                     | 2.0-7.0                                                | 0.30                                                 | 9.38                                                                    | 1.07                                                                 | 7.50                                                            | 0.24                                                                          | 3.82                                                           | 20.70                                                                |
| Pavona sp. 3                                                                                                                                                                                                                                                                        | 2                                                   | 8.2                                                          | 2.4                     | 6.5-9.9                                                | 0.20                                                 | 6.25                                                                    | 0.72                                                                 | 5.00                                                            | 0.39                                                                          | 6.20                                                           | 17.45                                                                |
| Psammocora sp. 1                                                                                                                                                                                                                                                                    | 2                                                   | 6.0                                                          | 0.4                     |                                                        | 0.20                                                 | 6.25                                                                    | 0.72                                                                 | 5.00                                                            | 0.20                                                                          | 3.18                                                           | 14.43                                                                |
| Acropora digitifera                                                                                                                                                                                                                                                                 | 2                                                   | 3.5                                                          | 0.7                     |                                                        | 0.20                                                 | 6.25                                                                    | 0.72                                                                 | 5.00                                                            | 0.07                                                                          | 1.11                                                           | 12.36                                                                |
| Platygyra pini                                                                                                                                                                                                                                                                      | 2                                                   | 4.3                                                          | 0.4                     | 4.0-4.6                                                | 0.10                                                 | 3.13                                                                    | 0.72                                                                 | 5.00                                                            | 0.10                                                                          | 1.59                                                           | 9.72                                                                 |
| Favia matthai                                                                                                                                                                                                                                                                       | 2                                                   | 2.8                                                          | 0.6                     |                                                        | 0.10                                                 | 3.13                                                                    | 0.72                                                                 | 5.00                                                            | 0.05                                                                          | 0.79                                                           | 8.92                                                                 |
| Pavona varians                                                                                                                                                                                                                                                                      | 2                                                   | 2.4                                                          | 0.0                     |                                                        | 0.10                                                 | 3.13                                                                    | 0.72                                                                 | 5.00                                                            | 0.03                                                                          | 0.48                                                           | 8.61                                                                 |
| Montipora ehrenbergii                                                                                                                                                                                                                                                               | 1                                                   | 6.3                                                          | *                       |                                                        | 0.10                                                 | 3.13<br>3.13                                                            | 0.36                                                                 | 2.50<br>2.50                                                    | 0.11<br>0.10                                                                  | 1.75                                                           | 7.38                                                                 |
| Acropora humilis<br>Coscinaraea sp. 1                                                                                                                                                                                                                                               | 1                                                   | 3.2                                                          | 2                       | -                                                      | 0.10                                                 | 3.13                                                                    | 0.36                                                                 | 2.50                                                            | 0.03                                                                          | 0.48                                                           | 6.11                                                                 |
| Favia pallida                                                                                                                                                                                                                                                                       |                                                     | 3.5                                                          | -                       | -                                                      | 0.10                                                 | 3.13                                                                    | 0.36                                                                 | 2.50                                                            | 0.03                                                                          | 0.48                                                           | 6.11                                                                 |
| Pocillopora setchelli                                                                                                                                                                                                                                                               | 1                                                   | 3.0                                                          |                         | -                                                      | 0.10                                                 | 3.13                                                                    | 0.36                                                                 | 2.50                                                            | 0.03                                                                          | 0.48                                                           | 6.11                                                                 |
| Pocillopora verrucosa                                                                                                                                                                                                                                                               | 1                                                   | 3.5                                                          |                         | 2                                                      | 0.10                                                 | 3.13                                                                    | 0.36                                                                 | 2.50                                                            | 0.03                                                                          | 0.48                                                           | 6.11                                                                 |
| rocittopora vertucosa                                                                                                                                                                                                                                                               |                                                     | 3.7                                                          |                         |                                                        | 0.10                                                 | 3.15                                                                    | 0.30                                                                 | 2.00                                                            | 0.05                                                                          | 0.40                                                           | 0.11                                                                 |
| Totals:                                                                                                                                                                                                                                                                             | 40                                                  | 5.6                                                          | 5.0                     | 1.4-25.8                                               |                                                      |                                                                         | 14.35                                                                |                                                                 | 6.29                                                                          |                                                                |                                                                      |
| Inner Reef Flat<br>(0-30 meters)<br><u>Montipora ehrenbergii</u><br><u>Porites (P.) Lichen</u><br><u>Pocillopora damicornis</u><br><u>Goniastrea retiformis</u><br><u>Leptoria phrygia</u><br><u>Platygyra pini</u><br><u>Acropora surculosa</u><br><u>Favia pallida</u><br>Totals: | 1<br>7<br>4<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>8 | 46.0<br>3.8<br>7.9<br>3.7<br>8.8<br>7.9<br>5.5<br>2.4<br>7.6 | 4.6<br>1.8              | 2.4-6.9<br>2.0-13.0<br>2.4-5.0<br>-<br>-<br>2.0-46.0   | 0.17<br>0.50<br>0.33<br>0.17<br>0.17<br>0.17<br>0.17 | 8.50<br>25.00<br>16.50<br>16.50<br>8.50<br>8.50<br>8.50<br>8.50<br>8.50 | 0.01<br>0.08<br>0.05<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.20 | 5.56<br>38.89<br>22.22<br>11.11<br>5.56<br>5.56<br>5.56<br>5.56 | 0.191<br>0.010<br>0.028<br>0.003<br>0.007<br>0.005<br>0.003<br>0.001<br>0.249 | 76.71<br>4.02<br>11.24<br>1.20<br>2.81<br>2.41<br>1.20<br>0.40 | 90.77<br>67.91<br>49.96<br>28.81<br>16.87<br>16.47<br>15.26<br>14.46 |
| Transect E<br>Outer Reef flat<br>(30-80 meters)                                                                                                                                                                                                                                     |                                                     |                                                              |                         |                                                        |                                                      |                                                                         |                                                                      |                                                                 |                                                                               |                                                                |                                                                      |
| Porites (P.) <u>lutea</u><br><u>Goniastrea retiformis</u><br><u>Pocillopora damicornis</u><br><u>Acropora azurea</u><br>Pocillopora eydouxi<br>Pocillopora setchelli                                                                                                                | 12<br>5<br>10<br>4<br>3<br>1                        | 5.2<br>11.5<br>5.7<br>5.2<br>6.4<br>12.4                     | 3.3<br>2.9<br>2.0       | 2.4-13.1<br>6.9-15.0<br>2.0-11.0<br>3.7-8.0<br>5.3-8.5 | 0.50<br>0.30<br>0.20<br>0.20<br>0.20<br>0.10         | 25.00<br>15.00<br>15.00<br>10.00<br>10.00<br>5.00                       | 0.57<br>0.24<br>0.47<br>0.19<br>0.14<br>0.05                         | 30.00<br>12.50<br>25.00<br>10.00<br>7.50<br>2.50                | 0.15<br>0.26<br>0.15<br>0.04<br>0.05<br>0.06                                  | 19.21<br>33.29<br>19.21<br>5.12<br>6.40<br>7.68                | 74.21<br>60.79<br>59.21<br>25.12<br>23.90<br>15.18                   |

-----

Table 1. Continued.

| Transect No.,<br>Reef Zone, and |    | ze Di |     | rtion<br>ers in cm) | Frequency | Relative<br>Frequency                            | Density<br>(per m <sup>2</sup> ) | Relative<br>Density                                                                                             | Percent<br>Cover | Relative<br>Percent | Importance<br>Value |
|---------------------------------|----|-------|-----|---------------------|-----------|--------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|---------------------|---------------------|
| Coral Species                   | n  | Ý     | 8   | N                   |           | 1 22 4 19 30 A A A A A A A A A A A A A A A A A A | e marcingar, er                  | 1993 - 1993 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - |                  | Cover               |                     |
| Acropora digitifera             | 2  | 7.7   | 1.6 | 6.5-8.8             | 0.10      | 5.00                                             | 0.09                             | 5.00                                                                                                            | 0.04             | 5.12                | 15.12               |
| Goniastrea edwardsi             | 1  | 7.5   | 2   |                     | 0.10      | 5.00                                             | 0.05                             | 2.50                                                                                                            | 0.02             | 2.56                | 10.06               |
| Acropora cerealis               | 1  | 3.7   | -   |                     | 0.10      | 5.00                                             | 0.05                             | 2.50                                                                                                            | 0.01             | 1.28                | 8.78                |
| Leptoria phrygia                | 1  | 1.4   | •   | 7                   | 0.10      | 5.00                                             | 0.05                             | 2.50                                                                                                            | 0.001            | 0.13                | 7.63                |
| Totals:                         | 40 | 5.2   | 2.0 | 3.7-8.0             |           |                                                  | 1.90                             |                                                                                                                 | 0.781            |                     |                     |

| ransects                                                                                    |      | A   |    |     | B   |    |          | C   |        |     | D   |        |     | E   |
|---------------------------------------------------------------------------------------------|------|-----|----|-----|-----|----|----------|-----|--------|-----|-----|--------|-----|-----|
| eef Zones                                                                                   | IRF  | ORF | RF | IRF | ORF | RF | IRF      | ORF | RF     | IRF | ORF | RF     | IRF | ORF |
| axon                                                                                        |      |     |    |     |     |    |          |     |        |     |     |        |     |     |
| lass - ANTHOZOA                                                                             |      |     |    |     |     |    | 8 8      |     |        |     |     |        |     | 6   |
| rder - SCLERACTINIA                                                                         |      |     |    |     |     |    |          |     |        |     |     |        |     |     |
| uborder - ASTROCOENIINA                                                                     |      |     |    |     |     |    |          |     |        |     |     |        |     |     |
| amily - ASTROCOENIIDA                                                                       |      |     |    |     |     |    |          |     |        |     |     |        |     |     |
| Stylocoeniella armada (Ehrenberg)                                                           |      |     |    |     |     | x  |          |     |        |     |     |        |     |     |
| amily - THAMNASTERIIDAE                                                                     |      |     |    |     |     |    |          |     |        |     |     |        |     |     |
| <u>Psammocora contigua</u> (Esper)                                                          |      |     |    | x   |     |    |          |     |        |     | x   |        |     |     |
| <u>Psammocora</u> digitata Milne Edwards & Haime                                            |      |     |    |     |     |    |          |     | x      |     |     |        |     |     |
| Psammocora superficiales Gardiner<br>Psammocora sp. 1                                       |      |     |    |     |     |    |          |     | X      |     |     | X<br>X |     |     |
| Tourinocora sp. 1                                                                           |      |     |    |     |     |    |          |     | ^      |     |     | •      |     |     |
| amily - POCILLOPORIIDAE                                                                     |      |     |    |     |     |    |          |     |        |     |     |        |     |     |
| Stylophora mordax (Dana)                                                                    | x    |     | x  |     |     | x  |          |     | x      |     | x   |        |     |     |
| <u>Seriatopora hystrix</u> (Dana)<br>Pocillopora damicornis (Linnaeus)                      | ×    |     |    |     | X   | х  | X        | X   |        |     |     |        | x   | x   |
| Pocillopora danae Verrill                                                                   | •    |     |    |     | ~   |    | ~        | · A |        |     |     |        | x   | 0   |
| Pocillopora elegans Dana                                                                    |      |     |    | х   | х   | ×  |          |     | x      |     | х   |        |     |     |
| Pocillopora eydouxi Milne Edwards & Haime                                                   |      |     | X  |     | x   | х  |          |     | 14     |     |     | x      |     | х   |
| Pocillopora ligulata Dana<br>Pocillopora setchelli Hoffmeister                              | v    | ~   |    | ~   | v   | v  | x        |     | ×      |     | v   | X      |     |     |
| <u>Pociliopora setchetti</u> Horrmeister<br><u>Pociliopora verrucosa</u> (Ellis & Solander) | X    | x   | x  | x   | x   | x  | *        |     | x      |     | ××  | X      |     | X   |
| amily - ACROPORIDAE                                                                         |      |     |    |     |     | n  |          |     | n      |     | n   |        |     |     |
| Acropora azurea Veron & Wallace                                                             | x    |     | x  |     |     |    | ×        | x   |        |     | x   |        |     | x   |
| Acropora cerealis (Dana)                                                                    | Ŷ    | x   | x  |     | х   |    | <u>^</u> | ~   | X      |     | Ŷ   | x      |     | x   |
| Acropora digitifera (Dana)                                                                  | 1997 | X   | X  | x   | x   | Х  |          |     | x      |     | x   | X      |     | x   |
| Acropora humilis (Dana)                                                                     |      |     | X  |     |     |    |          |     | x      |     |     | X      |     |     |
| Acropora irregularis (Brook)                                                                |      |     |    |     |     | х  |          |     | X      |     |     | X      |     |     |
| <u>Acropora monticulosa</u> (Bruggemann)<br>Acropora nasuta (Dana)                          |      |     | x  |     |     |    |          |     | X<br>X |     | X   | X      |     |     |
| Acropora ocellata (Klunzinger)                                                              |      | X   | ~  | ×   |     |    |          |     | ~      |     |     | x      |     |     |
| Acropora palifera (Lamarck)                                                                 |      |     |    |     |     |    |          |     |        |     |     |        | x   |     |
| Acropora smithi (Brook)                                                                     |      |     |    |     |     |    |          |     | X      |     |     | X      |     |     |
| Acropora squarrosa (Ehrenberg)                                                              |      |     |    |     |     |    |          |     | х      |     | X   |        |     |     |

# Table 2. List of coral species recorded from Transects A through E. List also includes species observed within a 5-meter-wide band along each side of the transects.

-

| rans  | ects                                                                                          | 2   | A    | -  |     | B   |    | <u> </u> | <u>_C</u> |    | -   | D   |    |     | Ε.  |
|-------|-----------------------------------------------------------------------------------------------|-----|------|----|-----|-----|----|----------|-----------|----|-----|-----|----|-----|-----|
| Reef  | Zones                                                                                         | IRF | ORF  | RF | IRF | ORF | RF | IRF      | ORF       | RF | IRF | ORF | RF | IRF | ORF |
| faxon |                                                                                               |     |      |    |     |     |    |          |           | 42 |     |     |    |     |     |
|       | <u>Acropora tenuis</u> (Dana)                                                                 |     |      |    |     |     | x  |          |           | x  |     |     | x  | x   |     |
|       | <u>Montipora enrenbergii</u> Verrill                                                          |     | х    |    |     |     |    |          |           |    |     | Х   | х  | Х   |     |
|       | Montipora elschneri Vaughan                                                                   |     | - 22 | Х  |     |     |    |          |           | x  |     |     |    |     |     |
|       | Montipora hoffmeisteri Wells                                                                  |     | х    |    |     |     |    |          |           | Х  |     |     |    |     |     |
|       | Montipora Lobulata Bernard                                                                    | х   |      |    |     |     |    |          |           |    |     |     |    |     |     |
|       | <u>Montipora tuberculosa</u> (Lamarck)<br>M <u>ontipora venosa</u> (Ehrenberg)                |     |      | х  |     |     | X  |          |           |    |     |     |    |     |     |
|       | Montipora vernilli Vaughan                                                                    |     |      | x  |     |     | х  |          |           |    |     | х   | х  |     |     |
|       | Montipora verrucosa (Lamarck)                                                                 |     |      | ^  |     |     | ^  |          |           | x  |     | ^   | ^  |     |     |
|       | Montipora sp. 1                                                                               |     |      | х  |     |     |    |          |           | Ŷ  |     |     |    |     |     |
|       | Montipora sp. 2                                                                               |     |      |    |     |     |    |          |           | ~  |     |     | x  |     |     |
| amil  | der – FUNGIINA<br>y – AGARICIIDAE<br><u>Pavona duerdeni</u> Vaughan<br>Pavona varians Verrill |     |      | x  |     |     |    |          |           | x  |     |     | x  |     |     |
|       | Pavona sp. 1                                                                                  |     |      | x  |     |     |    |          |           | ~  |     |     | ~  |     |     |
|       | Pavona sp. 2                                                                                  |     |      | X  |     |     |    |          |           |    |     |     |    |     |     |
|       | Pavona sp. 3                                                                                  | х   |      |    |     |     | Х  |          |           | х  |     |     | X  |     |     |
| amil  | y - SIDERASTREIDAE                                                                            |     |      |    |     |     |    |          |           |    |     |     |    |     |     |
|       | Coscinaraea sp. 1                                                                             |     |      |    |     |     |    |          |           |    |     |     | х  |     |     |
| amil  | y - FUNGIIDAE                                                                                 |     |      |    |     |     |    |          |           |    |     |     |    |     |     |
| 8     | <u>Fungia</u> ( <u>Pluractis</u> ) <u>scutaria</u> (Lamarck)                                  |     |      |    |     |     | x  |          |           |    |     |     |    |     |     |
| amil  | y - PORITIDAE                                                                                 |     |      |    |     |     |    |          |           |    |     |     |    |     |     |
|       | <u>Goniopora tenuidens</u> Quelch                                                             |     |      | X  |     |     |    |          |           |    |     |     |    |     |     |
|       | Porites (Porites) australiensis Vaughan                                                       | X   | X    | X  |     |     | х  | х        |           | х  | х   |     | х  |     |     |
|       | Porites (Porites) <u>lichen</u> Dana                                                          | X   |      | х  |     |     | х  |          |           | x  |     |     | x  | Х   |     |
|       | Porites (Porites) lutea Milne Edwards & Haime                                                 | Х   | Х    | х  | X   | Х   | X  | х        | Х         | x  | х   |     | x  |     | Х   |
|       | Porites (Porites) solida (Forskal)                                                            |     |      |    | ×   |     |    |          |           |    |     |     |    |     |     |
| 1     | <u>Porites (Synaraea) rus</u> (Forskal)                                                       |     |      |    |     |     | X  |          |           |    |     | X   | X  |     |     |

| Transects                                                                      |     | A   |    |     | В   | _      |     | С   |        | š(  | D    |        |     | Ε   |
|--------------------------------------------------------------------------------|-----|-----|----|-----|-----|--------|-----|-----|--------|-----|------|--------|-----|-----|
| Reef Zones                                                                     | IRF | ORF | RF | IRF | ORF | RF     | IRF | ORF | RF     | IRF | ORF  | RF     | IRF | OR  |
| Taxon                                                                          |     |     |    |     |     |        |     |     | 4070   |     |      |        |     | 081 |
| Suborder · FAVIINA<br>Family · FAVIIDAE                                        |     |     |    |     |     |        |     |     |        |     |      |        |     |     |
| <u>Favia favus</u> (Forskal)                                                   | х   |     | x  |     |     |        |     |     | х      |     | x    |        |     |     |
| Favia matthai Vaughan                                                          |     |     | X  |     |     | X      |     |     | х      |     | X    | X      | v   |     |
| <u>Favia pallida</u> (Dana)<br><u>Favia stellig</u> era (Dana)                 |     |     | х  |     |     | X<br>X |     |     | х      |     |      | X<br>X | x   |     |
| Favites russelli (Wells)                                                       |     |     | ^  |     |     | x      |     |     | ~      |     |      | ^      |     |     |
| Oulophyilia crispa (Lamarck)                                                   |     |     |    |     |     | x      |     |     |        |     |      |        |     |     |
| <u>Goniastrea</u> edwardsi Chevalier<br><u>Goniastrea</u> retiformis (Lamarck) | х   | х   | x  |     | х   | x      | x   | х   | ×      |     | x    | x      | х   | X   |
| Platygyra daedalea (Ellis & Solander)                                          | ^   | ~   | â  |     | ^   | ^      | ^   | •   | â      |     | ^    | ^      | ^   | ^   |
| Platygyra pini Chevalier                                                       |     |     |    |     |     | X      |     |     | x      |     |      | x      | х   |     |
| Leptoria phrygia (Ellis & Solander)                                            |     |     | х  |     |     | X      |     |     | x<br>x |     | Х    | X      | х   | X   |
| <u>Hydnophora microconos</u> (Lamarck)<br>Montastrea curta (Dana)              |     |     |    |     |     | х      |     |     | x      |     | х    | X<br>X |     |     |
| Leptastrea purpurea (Dana)                                                     |     |     | х  |     |     | x      |     |     | x      |     | x    |        |     |     |
| Cyphastrea microphthalma (Lamarck)<br>Echinopora Lamellosa (Esper)             |     |     | x  |     |     |        |     |     | X      |     |      |        |     |     |
|                                                                                |     |     |    |     |     |        |     |     | ^      |     |      |        |     |     |
| Family - OCULINIDAE                                                            |     |     |    |     |     |        |     |     |        |     |      |        |     |     |
| <u>Galaxea</u> <u>fascicularis</u> (Linnaeus)                                  |     |     |    |     |     | х      |     |     | X      |     | x    | X      |     |     |
| Family - MUSSIDAE                                                              |     |     |    |     |     |        |     |     |        |     |      |        |     |     |
| Acanthastrea echinata (Dana)                                                   |     |     |    |     |     | x      |     |     |        |     | х    | x      |     |     |
| Lobophyllia corymbosa (Forskal)                                                |     |     |    |     |     | X      |     |     | x      |     |      |        |     |     |
| Class - HYDROZOA                                                               |     |     |    |     |     |        |     |     |        |     |      |        |     |     |
| Order - MILLEPORINA<br>Family - MILLEPORIDAE                                   |     |     |    |     |     |        |     |     |        |     |      |        |     |     |
| Millepora dichotoma Forskal                                                    |     |     |    |     |     |        |     |     | x      |     | x    |        |     |     |
| Millepora platyphylla Hemprich & Ehrenberg                                     |     | X   | х  |     |     | х      |     |     | x      |     | 1.02 | х      |     |     |
| Millepora tuberosa Boschma                                                     |     |     | X  |     |     |        |     |     |        |     |      |        |     |     |

-

Table 2. Continued.

| Transects                        |    |     | A   |    |     | 8   |    |     | C   |    |     | D   |    |     | E      |
|----------------------------------|----|-----|-----|----|-----|-----|----|-----|-----|----|-----|-----|----|-----|--------|
| Reef Zones                       |    | IRF | ORF | RF | IRF | OR     |
| Taxon                            |    |     |     |    |     |     |    |     |     |    |     |     |    |     |        |
| Total species per transect zone  |    | 12  | 10  | 30 | 7   | 8   | 34 | 6   | 4   | 43 | 2   | 22  | 35 | 10  | 10     |
| Total genera per transect zone   |    | 8   | 6   | 14 | 4   | 4   | 21 | 4   | 4   | 19 | 1   | 14  | 16 | 8   | 5      |
| Total species per transect       |    |     | 36  |    |     | 39  |    |     | 45  |    |     | 43  |    | 1   | 6<br>8 |
| Total genera per transect        |    |     | 14  |    |     | 22  |    |     | 19  |    |     | 18  |    |     | 8      |
| Total species for the study area | 72 |     |     |    |     |     |    |     |     |    |     |     |    |     |        |
| Total genera for the study area  | 27 |     |     |    |     |     |    |     |     |    |     |     |    |     |        |

#### CONSPICUOUS EPIBENTHIC MACROINVERTEBRATES

by

#### Barry D. Smith

#### Methods

Populations of conspicuous epibenthic macroinvertebrates were sampled along seven transects established on reef flat platform and reef front systems of the Obyan-Naftan reef complex (see Figs. 1 and 2, pp. 4-5). Species of macrobenthos occurring within 1 m of the transect line were identified and enumerated by an observer swimming along the line. Data were recorded for 5-m segments of the line. Thus, transects consisted of *n* rectangular quadrats, each of which covered an area of 10 m<sup>2</sup>.

Areas adjacent to the transects were also examined to record the presence of species inhabiting the reef but not occurring within the selected study sites. Remains of dead macroinvertebrates were noted when present, but they were not quantified.

#### Results

#### **Reef Flat Platform**

Echinoderms were the predominant benthic macroinvertebrates on all transects. The sea cucumbers <u>Holothuria atra</u> and <u>Stichopus chloronotus</u> were the most abundant echinoderms on the reef flat platform (Tables 1 and 2). These organisms exhibited a general pattern of increasing abundance from the inner reef to the outer reef on all transects except Transect D, where there was no significant difference in densities. <u>Bohadschia argus</u> was found in an inner reef area of Transect A where there was sufficient sediment accumulation for it to burrow partially in the sand.

Echinoids were generally restricted to the outer reef flat. <u>Echinothrix</u> <u>diadema</u> and <u>Echinometra mathaei</u> were scattered on the outer reef, where they occupied crevices and grooves in the substrate. The single exception to this pattern occurred on Transect A, were one <u>Diadema savignyi</u> was associated with a large rock on the inner reef, near the boundary with the outer reef. No asteroids were observed on the reef flat platform.

Obyan-Naftan reef supports a diverse community of molluscs. Predatory gastropods of the orders Mesogastropoda and Neogastropoda were predominant in terms of diversity, constituting some 77% of the total number of gastropod species present. The greatest diversity was exhibited by the family Conidae, which was represented by nine species belonging to the vermivorous guild of the genus <u>Conus</u>. Only four species of browsing detrital and suspension feeders from the orders Archaeogastropoda and Mesogastropoda were observed on the transects. The most abundant gastropod on the reef flat was the introduced marine snail <u>Trochus niloticus</u>. The giant clam <u>Tridacna maxima</u> was the only living species of bivalve encountered on reef flat transects.

Other than echinoderms and molluscs, few macrobenthos were observed on the reef flat. At the western end of the reef flat complex, the crab <u>Grapsus</u> cf. <u>tenuicrustatus</u> was associated with intertidal beach rock on Transect E, and the anemone <u>Heteractis</u> cf. <u>macrodactvlum</u> occurred in subtidal depressions on the outer reef. Two species of sponges were recorded on the inner reef on Transects A and E.

#### Reef Front

The Obyan-Naftan reef front was characterized by a diverse echinoderm assemblage (Table 3). Unlike the reef flat, however, echinoids were more abundant than holothurians. The boring sea urchin <u>Echinostrephus</u> cf. <u>aciculatus</u> was present in the highest density, occurring in clusters crowded on the walls of small channels in the reef. <u>Echinometra mathaci</u> and <u>Echinothrix diadema</u> were scattered in crevices in the reef framework.

Although holothurians were not abundant on the reef front, the species that inhabited this zone were the same as those that were found on the reef flat. Conversely, the reef front provided habitat for two species each of asteroids and crinoids, classes of echinoderms not represented on the reef flat. The seastars <u>Culcita novaeguineae</u> and <u>Linckia multifora</u> were represented by individual specimens. Two species of nocturnal crinoids, <u>Comanthus</u> cf. <u>parvicirrus</u> and <u>Comatella</u> cf. <u>maculata</u>, were observed hiding in the interstices of the reef framework.

Alcyonacean corals occurred on the reef front in abundances approaching those of the echinoids. <u>Sinularia</u> spp. were the most abundant and most widely distributed soft corals. <u>Lobophytum</u> spp. were present in lower numbers.

Epibenthic molluscs were slightly less diverse on the reef front than on the reef flat. Only one of the eight species of <u>Conus</u> inhabiting the reef front was also found on the reef flat. A total of 12 species of predatory neogastropods and 4 species of archaeogastropods were encountered on the reef front transects. Although no mesogastropods were found in the 400  $m^2$ surveyed, species such as the triton trumpet <u>Charonia tritonis</u> were observed in adjacent areas (Table 4).

The reef front provided apparently favorable habitat for the giant clam <u>Tridacna maxima</u>. Fifty clams ranging in size from 30-180 mm (x = 73.2; s = 42.4) in length were observed in the sampled area.

Table 4 presents a list of species of macroinvertebrates observed in the vicinity of the transects on the Obyan-Naftan reef but not found within the sampled area. Examination of this list reveals that of the 85 species of macroinvertebrates observed on the reef system, 25 species were never encountered on the transects.

#### Discussion

Although it may at first appear that an unusually large number of species were missed by the sampling method employed during this survey, a closer examination of the data indicates that the method was adequate to characterize the macroinvertebrate fauna of the area. Of the 25 species never encountered on transects, 5 species inhabited rocky intertidal limestone along the shore. Of the remaining 20 species not quantified on transects, 9 were collected from cryptic habitats. Therefore, only 11 species representing some 13% of the total did not occur within the sampled area.

The Obyan-Naftan reef complex is similar to other fringing reefs on

Saipan and throughout Micronesia. A survey of nearby Laulau Bay (Pacific Basin Environmental Consultants, 1984) provided similar descriptive results, although no quantitative samples of macrobenthos were made. While Laulau Bay supported a more diverse community of molluscs (97 species) than Obyan reef (59 species), a greater number of echinoderm species were recorded at Obyan (14 species) than at Laulau Bay (12 species). One note of particular interest is the discussion of large numbers of the coral-eating crown-of-thorns starfish <u>Acanthaster planci</u> at Laulau Bay in 1984. This species was not observed on Obyan-Naftan reef during the present study.

Studies of Tanapag reef platform (Neill, 1985; Potter, 1987) also produced results similar to the present study. The Tanapag reef is far more extensive than Obyan reef, and consequently, it provides a greater diversity of habitats and macroinvertebrate species. The high densities of ascidians, cerithiids, and buccinids found at Tanapag did not occur at Obyan reef.

Obyan reef supported 41 of the 120 species of molluscs that Fujioka (1984) reported for Saipan. Of the remaining species, all have been recorded in recent literature (Vermeij et al., 1983; Pacific Basin Environmental Consultants, 1984; Neill, 1985; Potter, 1987), except <u>Charonia tritonis</u>.

Even based on a study of as short a duration as this, it is obvious that the macroinvertebrate populations on Obyan-Naftan reef provide important resources in subsistence fishing. The topshell <u>Trochus niloticus</u>, which was introduced to Saipan from Palau in the 1930s (South Seas Government, Fisheries Experiment Station, 1939), is well established and supports a limited fishery. This species attained densities comparable to the highest reef flat densities found on Guam (Smith, 1987). During the field work of this study, local fishermen were observed capturing <u>Octopus</u> sp. in the area between Transects A and E. Thus, the importance of such an ecosystem includes socio-economic values as well as ecological parameters.

#### **References** Cited

- Fujioka, Y. 1984. Molluscan fauna of Saipan Island. Bull. Biol. Soc. Hiroshima Univ. 50:11-15.
- Neill, J. B. 1985. Macroinvertebrates. pp. 37-53. <u>In</u> R. H. Randall (ed.), A marine survey of the Tanapag reef platform adjacent to Unai Papau. Univ. Guam Mar. Lab., Misc. Rept. 48.
- Pacific Basin Environmental Consultants, Inc. 1984. Biological and physical survey of Bahia Laulau, Saipan. Final report prepared for Planning/Energy Office, Commonwealth of the Northern Mariana Islands. vii + 159 pp.
- Potter, T. S. 1987. Macroinvertebrates. pp. 70-126. <u>In</u> R. H. Randall (ed.). A marine survey of the northern Tanapag reef platform, Saipan, Mariana Islands. Univ. Guam Mar. Lab., Tech. Rept. 87.
- Smith, B. D. 1987. Growth rate, distribution and abundance of the introduced topshell <u>Trochus niloticus</u> Linnaeus on Guam, Mariana Islands. Bull. Mar. Sci. 41(2):466-474.

- South Sea Government, Fisheries Experiment Station. 1939. Experiments on transplantation of top shells. Rept. Fish. Exp. Sta., South Seas Govt. 2:121-126. [In Japanese]
- Vermeij, G. J., E. A. Kay, and L. G. Eldredge. 1983. Molluscs of the northern Mariana Islands, with special reference to the selectivity of oceanic dispersal barriers. Micronesica 19:27-55.

Table 1. Mean densities of benthic macroinvertebrates along transects on Obyan reef flat. Data are mean ± standard deviation (number of 10-m<sup>2</sup> quadrats). Each transect was divided into inner reef flat (IRF) and outer reef flat (ORF) zones. An asterisk (\*) indicates the occurrence of dead individuals observed but not censused along the transect. TNC = Too Numerous to Count.

| et disk in transmission (2010-06) (200             | Transo<br>TRF | ect A<br>ORF | Trans<br>IRF | ect B<br>ORF                          | Transo<br>IRF | ect E<br>ORF   |
|----------------------------------------------------|---------------|--------------|--------------|---------------------------------------|---------------|----------------|
| A DESCRIPTION                                      | 181           |              | 161          |                                       |               |                |
| Phylum Protozoa                                    |               |              |              |                                       |               |                |
| Baculogypsina sphaerulata (Parker & Jones)         | TNC           | TNC          | TNC          | TNC                                   | TNC           | TNC            |
|                                                    |               | 2            |              |                                       |               |                |
| Phylum Porifera                                    |               |              |              |                                       | l             |                |
| <u>Cinachyra</u> <u>australiensis</u> (Carter)     | 0.25±0.71(8)  |              |              |                                       |               |                |
| <u>Dysidea</u> cf. <u>herbacea</u> (Keller)        |               |              |              |                                       | 0.33±0.52(6)  |                |
| Phylum Cnidaria                                    |               |              |              |                                       |               |                |
| Heteractis cf. macrodactylum (Haddon & Shackleton) |               |              |              |                                       |               | 0.20±0.42(10)  |
| meteractis cr. macrodactytom (nactor a snacktetor) | 1             |              |              |                                       |               | 0.20200.02(10) |
| Phylum Mollusca                                    |               |              |              | 3                                     |               |                |
| Trochus niloticus Linnaeus                         |               | 0.86±1.46(7) |              | 0.13±0.35(8)                          |               | 1.30±1.64(10)  |
| Dendropoma maxima Sowerby                          | 1.75±4.95(8)  |              | 2.14±3.98(7) | 1.13±2.23(8)                          |               |                |
| Cerithium nodulosum Bruguiere                      | 0.13±0.35(8)  |              |              |                                       |               |                |
| Cypraea moneta Linnaeus                            |               | 0.29±0.49(7) |              | 0.25±0.46(8)                          |               | 0.90±1.52(10)  |
| Cymatium nicobaricum (Roeding)                     | 0.13±0.35(8)  |              |              | (13) (14)<br>(15)                     |               |                |
| Bursa bufonia (Gmelin)                             |               |              |              |                                       |               |                |
| <u>Morula granulata</u> (Duclos)                   |               |              |              | a                                     | 1.00±2.45(6)  |                |
| Morula squamosa (Pease)                            |               |              |              | i i i i i i i i i i i i i i i i i i i | 0.67±1.63(6)  |                |
| <u>Morula</u> <u>uva</u> (Roeding)                 | 0.63±1.77(8)  | 0.29±0.49(7) |              | 0                                     |               | 0.20±0.63(10)  |
| <u>Muricodrupa</u> <u>funiculus</u> (Wood)         |               |              |              |                                       | 0.17±0.41(6)  |                |
| <u>Latirus polygonus barclayi</u> (Reeve)          |               | 0.14±0.38(7) |              |                                       |               |                |
| <u>Peristernia</u> <u>nassatula</u> (Lamarck)      |               | 0.14±0.38(7) |              |                                       | 0.17±0.41(6)  |                |
| <u>Vasum turbinellus</u> (Linnaeus)                | 0.38±0.74(8)  | 0.43±1.13(7) |              |                                       | 0.83±1.60(6)  | 0.40±0.84(10)  |
| Conus chaldaeus Roeding                            | 0.25±0.71(8)  |              |              |                                       |               |                |
| Conus ebraeus Linnaeus                             | 0.63±1.77(8)  |              | 0.57±1.13(7) | 0.13±0.35(8)                          | 1.00±1.55(6)  | 0.10±0.32(10)  |
| <u>Conus flavidus</u> Lamarck                      |               |              |              | 0.38±0.74(8)                          |               | 0.10±0.32(10)  |
| Conus lividus Hwass                                |               |              |              | 0.13±0.35(8)<br>0.25±0.46(8)          |               | 0.20±0.42(10)  |
| Conus miles Linnaeus                               |               | 3            |              | U.2310.40(0)                          | 0.33±0.82(6)  | 0.20±0.42(10)  |
| <u>Conus miliaris</u> Hwass<br>Conus rattus Hwass  | 0.13±0.35(8)  |              |              | 1                                     | 0.3320.02(0)  | 0.2010.42(10)  |
| <u>Conus sanguinolentus</u> Quoy & Gaimard         | 0.1310.33(8)  |              |              | 3                                     |               | 0.20±0.42(10)  |
| Conus sponsalis Hwass                              |               |              | 0.29±0.75(7) |                                       | 0.17±0.41(6)  | 0.2010.42(10)  |
| <u>Placobranchus</u> <u>ocellatus</u> van Hasselt  |               |              |              |                                       | 0.33±0.82(6)  |                |
| Tridacna maxima (Roeding)                          | 0.38±0.74(8)  | 0.14±0.38(7) |              | 8                                     |               |                |
| TI CARACTAL MAXIMA (NACATING)                      |               |              |              |                                       |               |                |
| Phylum Arthropoda                                  |               | 1            |              | 6                                     |               |                |
| Grapsus cf. tenuicrustatus (Herbst)                |               |              |              |                                       | 0.17±0.41(6)  |                |
|                                                    |               |              |              |                                       |               |                |

|                                     | Trans        | ect A        | Trans        | ect 8        | Trans        | ect E         |
|-------------------------------------|--------------|--------------|--------------|--------------|--------------|---------------|
|                                     | IRF          | ORF          | IRF          | ORF          | IRF          | ORF           |
| Phylum Echinodermata                |              |              | 1            |              |              |               |
| Bohadschia argus Jaeger             | 0.13±0.35(8) |              |              | i            |              | i             |
| Holothuria atra Jaeger              | 1.25±1.39(8) | 2.57±1.90(7) | 1.29±1.11(7) | 3.13±1.45(8) | 0.33±0.52(6) | 3.50±2.64(10) |
| Stichopus chloronotus Brandt        | 0.50±0.76(8) | 3.57±2.44(7) | i and        | 15 N.B.      |              | 1.50±1.27(10) |
| Diadema savignyi Michelin           | 0.13±0.35(8) |              |              | i            | i            | 1             |
| Echinometra mathaei (de Blainville) |              |              |              | 0.13±0.35(8) |              | 1.10±1.29(10) |
| Echinothrix diadema (Linnaeus)      | i            | 1.00±1.41(7) | <b>i</b>     | 0.25±0.46(8) | i            | 0.20±0.42(10) |

Table 2. Mean densities of benthic\_macroinvertebrates along transects on Obyan-Naftan reef flat. Data are mean ± standard deviation (number of 10-m<sup>2</sup> quadrats). Each transect was divided into inner reef flat (IRF) and outer reef flat (ORF) zones. An asterisk (\*) indicates the occurrence of dead individuals observed but not censused along the transect. TNC = Too Numerous to Count.

|                                                                        | Trans        | ect C        | Trans        |             |
|------------------------------------------------------------------------|--------------|--------------|--------------|-------------|
|                                                                        | IRF          | ORF          | IRF          | ORF         |
| Phylum Protozoa                                                        |              |              |              |             |
| <u>Baculogypsina</u> <u>sphaerulata</u> (Parker & Jones)               | TNC          | TNC          | TNC          | TNC         |
| hylum Porifera                                                         |              |              |              | 1           |
| Cinachyra australiensis (Carter)                                       | i            |              | i            |             |
| Dysidea cf. <u>herbacea</u> (Keller)                                   |              |              | ļ            | 1           |
| Phylum Cnidaria                                                        |              |              |              |             |
| Heteractis cf. macrodactylum (Haddon & Shackleton)                     |              |              |              |             |
|                                                                        | i            |              | l            | 1           |
| Phylum Mollusca                                                        | [            |              |              |             |
| <u>Trochus niloticus</u> Linnaeus                                      |              | 0.20±0.45(5) |              |             |
| Dendropoma maxima Sowerby                                              |              |              |              |             |
| <u>Cerithium nodulosum</u> Bruguiere                                   | 0.5000.58(/) | 1.00+0.71(5) |              | ļ           |
| Cypraea moneta Linnaeus                                                | 0.50±0.58(4) |              |              | !           |
| <u>Cymatium nicobaricum</u> (Roeding)<br><u>Bursa bufonia</u> (Gmelin) |              | 0.20±0.45(5) |              |             |
| Morula granulata (Duclos)                                              |              | 0.2010.43(3) | 0.25±0.50(4) |             |
| Morula squamosa (Pease)                                                |              |              | 0.2520.50(4) | 1           |
| Morula uva (Roeding)                                                   | 0.25±0.50(4) | 0.40±0.89(5) |              |             |
| Muricodrupa funiculus (Wood)                                           | 0.2520.30(4) | 0.4020.07(3) |              |             |
| Latirus polygonus barclayi (Reeve)                                     |              |              |              |             |
| Peristernia nassatula (Lamarck)                                        |              |              |              |             |
| Vasum turbinellus (Linnaeus)                                           | 0.50±1.00(4) | 0.20±0.45(5) |              |             |
| Conus chaldaeus Roeding                                                |              |              |              |             |
| Conus ebraeus Linnaeus                                                 | 0.25±0.50(4) | 0.20±0.45(5) | 0.75±0.96(4) | 0.33±0.58(3 |
| Conus flavidus Lamarck                                                 |              |              |              |             |
| Conus Lividus Hwass                                                    | i i          | 0.20±0.45(5) | i            | i           |
| Conus miles Linnaeus                                                   |              |              |              |             |
| Conus rattus Hwass                                                     |              | 0.20±0.45(5) | i            |             |
| Conus sanguinolentus Quoy & Gaimard                                    |              |              |              | İ           |
| <u>Conus sponsalis</u> Hwass                                           | 1            |              |              | ĺ           |
| Placobranchus cf. ocellatus van Hasselt                                |              |              |              | ĺ           |
| <u>Tridacna maxima</u> (Roeding)                                       |              |              |              |             |
| hylum Arthropoda                                                       |              |              |              |             |
| Grapsus cf. tenuicrustatus (Herbst)                                    |              |              |              |             |

Table 2. Continued.

|                                     | j Irans      | ect C        | Trans                                 | ect D        |
|-------------------------------------|--------------|--------------|---------------------------------------|--------------|
|                                     | IRF          | ORF          | IRF                                   | ORF          |
| Phylum Echinodermata                |              |              |                                       | 1            |
| Bohadschia argus Jaeger             | i            | i            | İ                                     |              |
| Holothuria atra Jaeger              | 0.25±0.50(4) | 3.00±2.00(5) | 6.50±3.00(4)                          | 5.00±4.58(3) |
| Stichopus chloronotus Brandt        |              | 1.20±0.84(5) |                                       | 1            |
| Diadema savignyi Michelin           | i            |              | İ                                     | 1            |
| Echinometra mathaei (de Blainville) | i i          | 0.60±0.55(5) |                                       | i            |
| Echinothrix diadema (Linnaeus)      | i            | 0.40±0.89(5) | i i i i i i i i i i i i i i i i i i i | i            |

|                                         |                | (1) <u></u>          |            |                                       |
|-----------------------------------------|----------------|----------------------|------------|---------------------------------------|
|                                         | Transect A     | Transect B           | Transect C | Transect D                            |
| Phylum Porifera                         |                |                      |            |                                       |
| orange sponge                           | 0.2 ± 0.42     |                      |            |                                       |
| Phylum Cnidaria                         |                |                      |            |                                       |
| Heteractis cf. crispa (Ehrenberg, 1834) |                | 0.1 ± 0.32           |            |                                       |
| Lobophytum spp.                         | 0.5 ± 1.27     | 0.1 ± 0.32           |            | 0.2 ± 0.42                            |
| <u>Sinularia</u> spp.                   | 1.4 ± 2.17     | 3.5 ± 4.77           | 1.9 ± 1.66 | 1.6 ± 2.23                            |
| Phylum Annelida                         |                |                      |            |                                       |
| Sabellastarte sanctijosephi (Gravier)   | 0.1 ± 0.32     |                      |            |                                       |
| Phylum Mollusca                         |                |                      |            |                                       |
| Clangulus clanguloides Wood             |                |                      | [          | *                                     |
| Tectus pyramis (Born)                   | 0.1 ± 0.32     | 0.3 ± 0.48           | 0.2 ± 0.63 | 0.3 ± 0.67                            |
| Trochus niloticus Linnaeus              | 0.3 ± 0.67     | 0.3 ± 0.48           | 0.1 ± 0.32 |                                       |
| Astraea rhodostoma Lamarck              | 0.1 ± 0.32     | 0.1 ± 0.32           | 0.2 ± 0.42 | 0.1 ± 0.32                            |
| Turbo argyrostomus Linnaeus             | i              | 0.2 ± 0.42           | 0.1 ± 0.32 |                                       |
| Latirus nodatus (Gmelin)                | 0.1 ± 0.32     |                      | l          |                                       |
| Drupa rubusidaeus Roeding               |                |                      | 0.1 ± 0.32 |                                       |
| Vasum ceramicum (Linnaeus)              |                | 0.1 ± 0.32           |            | [                                     |
| Vasum turbinellus (Linnaeus)            | 0.1 ± 0.32     |                      | 1          |                                       |
| Conus balteatus Sowerby                 | 1              |                      |            | 0.1 ± 0.32                            |
| Conus distans Hwass                     | 1              | 0.2 ± 0.42           |            |                                       |
| Conus flavidus Lamarck                  | Ĭ              |                      | i          | 0.3 ± 0.48                            |
| Conus imperialis Linnaeus               | 0.1 ± 0.32     |                      | 0.1 ± 0.32 | i i i i i i i i i i i i i i i i i i i |
| Conus Litoglyphus Hwass                 | $0.2 \pm 0.42$ |                      | i          | 0.2 ± 0.42                            |
| Conus litteratus Linnaeus               | +              |                      |            | a solititi feare so                   |
| Conus miles Linnaeus                    | $0.3 \pm 0.48$ | 0.1 ± 0.32           |            | 0.4 ± 0.52                            |
| Conus moreleti Crosse                   |                | wernen van besterver |            | 0.2 ± 0.42                            |
| Tridacna maxima (Roeding)               | 0.3 ± 0.82     | 0.7 ± 1.06           | 1.0 ± 0.94 | 2.0 ± 1.76                            |
| Phylum Arthropoda                       |                |                      |            |                                       |
| Dardanus megistos (Herbst)              | 1.3 ± 0.48     | 0.1 ± 0.32           | 0.1 ± 0.32 | 0.1 ± 0.32                            |
| Phylum Echinodermata                    |                |                      |            |                                       |
| Comanthus cf. parvicirrus (Muller)      |                | 0.1 ± 0.32           | 0.4 ± 0.70 |                                       |
| Comatella cf. maculata (Carpenter)      |                |                      | 0.1 ± 0.32 | 1                                     |
| Actinopyga mauritiana (Quoy & Gaimard)  | 0.1 ± 0.32     | 0.1 ± 0.32           |            | 1                                     |
| Bohadschia argus Jaeger                 |                |                      | 0.1 ± 0.32 |                                       |
| Holothuria atra Jaeger                  | 0.1 ± 0.32     | and the sector fact  |            |                                       |
| Stichopus chloronotus Brandt            | 0.8 ± 1.03     | 0.5 ± 0.71           | 0.5 ± 0.71 | 2.0 ± 1.25                            |

Table 3. Mean densities of benthic macroinvertebrates along transects on the reef front of Obyan-Naftan reef. Data are given as mean ± standard deviation of organisms counted in ten 10-m<sup>2</sup> quadrats. An asterisk (\*) indicates the occurrence of dead individuals observed along the transect but not censused.

Table 3. Continued.

|                                          | Transect A | Transect B | Transect C | Transect ( |
|------------------------------------------|------------|------------|------------|------------|
| Echinometra mathaei (de Blainville)      | 0.3 ± 0.67 | 1.4 ± 2.12 | 0.8 ± 1.03 | 1.5 ± 0.9  |
| Echinostrephus cf. aciculatus A. Agassiz | 3.1 ± 1.97 | 2.5 ± 2.07 | 2.3 ± 1.42 | 3.4 ± 2.8  |
| Echinothrix diadema (Linnaeus)           |            | 0.4 ± 0.70 | 0.5 ± 0.71 | 0.1 ± 0.32 |
| Culcita novaeguineae Muller & Troschel   | i i        | 0.1 ± 0.32 |            |            |
| Linckia multifora (Lamarck)              | i          |            | 0.1 ± 0.32 |            |

#### FISHES

#### by

#### Steven S. Amesbury

#### Methods

Two 5-m transects were set out at each of the 5 transecting locations (A through E) on the Obyan-Naftan reef flat (Figs. 1 and 2, pp.4-5). These 50-m transects ran parallel to the shoreline, with Transect 1 being located on the inner reef flat and Transect 2 on the outer reef flat. At locations A through D, a 50-m transect was also run at 5- to 6-m depth on the reef front.

Fish were enumerated by species within one meter of each side of the 50-m transect line (a total of  $100 \text{ m}^2$ ). At the completion of the enumeration, an additional 15 to 20 minutes were spent recording the presence of additional fish species within the immediate vicinity of the transect line but which were not enumerated on the transect census.

#### Results

The reef flat fish communities in the Obyan-Naftan area contained a relatively modest number of fish species (a total of 33) and low densities of fish (4 to 77 fish per 100 m<sup>2</sup>; Table 1). There was no consistent difference in species richness between the outer and inner reef flat zones, but there was a consistent difference with regard to fish abundance: in each of the five transects there were higher fish densities on the outer reef flat than there were on the inner (Table 1).

Reef flat habitats, and fish assemblages, were very similar throughout the whole Obyan-Naftan area from Transect E to Transect D.

The characteristics of the fish communities on the reef front were quite different from those on the reef flat (Table 2). A total of 67 fish species were seen on the reef front, 31 to 39 species per transect. Fish densities were also high, ranging from 129 to 191 fish per 100 m<sup>2</sup>.

#### Discussion

The species of fish seen on the reef flat transects at Obyan-Naftan are typical for shallow, wave-swept reef flats. Similar species assemblages have been recorded for Guam in similar habitats (Amesbury, 1978). The species assemblages were similar at all five transect locations, and there was no evidence of any disturbance of the fish communities.

The fish communities observed on the reef front transects were also broadly similar from transect to transect. These fish communities are similar to reef front communities outside of Saipan Lagoon (Amesbury et al., 1979), but are not as rich in species.

There is little in the way of harvestable fish resources on the Obyan-Naftan reef flat. However, on the reef front there are significant numbers of harvestable surgeonfishes and parrotfishes. We were informed that fishermen on Saipan fish in this area. In addition, we observed recreational scuba divers using this area. It would be most desirable that any development of the Obyan-Naftan area be carried out in such a way that fishing and diving opportunities be preserved.

#### Literature Cited

Amesbury, S. S. 1978. Studies on the biology of the reef fishes of Guam. Univ. Guam Mar. Lab., Tech. Rept. 49. 65 p.

Amesbury, S. S., D. R. Lassuy, R. F. Myers, and V. Tyndzik. 1979. A survey of the fish resources of Saipan Lagoon. Univ. Guam Mar. Lab., Tech. Rept. 52. 58 p.

| and an an an an an an an an an an an an an                                                                                                                |               |             |        |         | TRANS               | ECTS        |                 |        |        |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|--------|---------|---------------------|-------------|-----------------|--------|--------|--------------|
| SPECIES                                                                                                                                                   | <u>Е</u><br>1 | Ż           | 1      | 2       | <del>- 6</del><br>1 | 2           | - <u>c</u><br>1 | 2      | 1      | 2            |
| ACANTHURIDAE                                                                                                                                              |               |             |        |         |                     |             |                 |        |        |              |
| <u>Acanthurus lineatus</u><br><u>Acanthurus nigrofuscus</u><br><u>Acanthurus triostegus</u><br><u>Naso lituratus</u><br><u>Naso unicornis</u>             |               | +<br>6<br>+ | †<br>1 | ٠       | 1                   | 1<br>*<br>+ | 1<br>+          | +<br>1 | 1<br>+ | +<br>10<br>+ |
| BALISTIDAE                                                                                                                                                |               |             |        |         |                     |             |                 |        |        |              |
| Rhinecanthus rectangulus                                                                                                                                  |               | 2           |        |         |                     |             | +               | +      |        |              |
| BLENNIDAE                                                                                                                                                 |               |             |        |         |                     |             |                 |        |        |              |
| <u>Salarias</u> <u>fasciatus</u>                                                                                                                          |               |             |        | +       |                     |             |                 |        |        |              |
| CHAETODONTIDAE                                                                                                                                            |               |             |        |         |                     |             |                 |        |        |              |
| <u>Chaetodon</u> <u>citrinellus</u><br><u>Chaetodon</u> <u>lunula</u><br><u>Chaetodon</u> <u>trifasciatus</u>                                             | *<br>*        | 1           | 3      | +       | +                   | +           | +               | 3      | 1      | +            |
| FISTULARIIDAE                                                                                                                                             |               |             |        |         |                     |             |                 |        |        |              |
| <u>Fistularia</u> commersonii                                                                                                                             |               |             |        |         |                     | +           |                 |        |        |              |
| GRAMMISTIDAE                                                                                                                                              |               |             |        |         |                     |             |                 |        |        |              |
| <u>Grammistes</u> <u>sexlineatus</u>                                                                                                                      |               |             | 1      |         |                     |             |                 |        |        |              |
| LABRIDAE                                                                                                                                                  |               |             |        |         |                     |             |                 |        | × .    |              |
| <u>Gomphosus varius</u><br><u>Halichoeres centiquadrus</u><br><u>Halichoeres margaritaceus</u><br><u>Halichoeres trimaculatus</u><br>Labroides dimidiatus | +             | 1<br>31     | 2<br>4 | 21<br>2 | +<br>6              | 12<br>2     | 7<br>1          | 6      | 8<br>1 | 9            |
| <u>Stethojulis bandanensis</u><br>Thalassoma <u>hardwicki</u>                                                                                             |               | 2<br>+      | 1      | 1       | 3                   | 2           | 4               | +      | 1      | +            |
| <u>Thalassoma</u> <u>guinquevittatum</u><br>juveniles                                                                                                     |               | 2           | +      |         |                     |             | +<br>1          | 1      |        | 2            |

#### Table 1. Abundance (no. per 100 m<sup>2</sup>) of fishes on Obyan-Naftan reef flat transects. Transect 1: inner reef flat; transect 2: outer reef flat. Fish species observed near the transect but not counted on the transect are marked with a +.

|                                                                                             |        | TRANSECTS    |             |          |         |            |          |              |         |          |
|---------------------------------------------------------------------------------------------|--------|--------------|-------------|----------|---------|------------|----------|--------------|---------|----------|
| SPECIES                                                                                     | 1      | E2           | 1           | A<br>2   | 1       | <u>B</u> 2 | 1        | <u>c</u> 2   | 1       | D<br>2   |
|                                                                                             |        |              |             |          |         |            |          |              |         |          |
| MUGILIDAE                                                                                   |        |              |             |          |         |            |          |              |         |          |
| <u>Liza vaigiensis</u>                                                                      |        |              |             |          |         |            |          |              |         | 1        |
| MULLIDAE                                                                                    |        |              |             |          |         |            |          |              |         |          |
| Parupeneus barberinus<br>Parupeneus bifasciatus                                             |        | +            |             |          |         | +          | +        |              |         | 1        |
| POMACENTRIDAE                                                                               |        |              |             |          |         |            |          |              |         |          |
| Abudefduf septemfasciatus<br>Abudefduf sordidus                                             | +<br>+ | +            |             |          |         |            |          |              |         | +        |
| <u>Chrysiptera glauca</u><br><u>Chrysiptera leucopoma</u><br><u>Stegastes nigricans</u>     | 4      | 6<br>4<br>21 | 1<br>9<br>2 | 18<br>22 | 10      | *<br>16    | *<br>24  | 3<br>25<br>2 | 50<br>1 | 28<br>+  |
| SCARIDAE                                                                                    |        |              |             |          |         |            |          |              |         |          |
| <u>Scarus ghobban</u><br><u>Scarus harid</u>                                                |        | +            |             |          |         |            | +        | 3            |         | *        |
| SERRANIDAE                                                                                  |        |              |             |          |         |            |          |              |         |          |
| Epinephelus merra                                                                           |        | +            |             |          |         |            |          |              |         |          |
| SYNODONTIDAE                                                                                |        |              |             |          |         |            |          |              |         |          |
| <u>Saurida</u> gracilis                                                                     |        |              |             |          |         | +          |          |              |         |          |
| TETRAODONTIDAE                                                                              |        |              |             |          |         |            |          |              |         |          |
| <u>Canthigaster</u> <u>solandri</u>                                                         |        | 1            | 1           |          | 2       |            |          |              |         |          |
| Total species observed<br>Total fish abundance on tragsect<br>(no. per 100 m <sup>2</sup> ) | 6<br>4 | 19<br>77     | 12<br>25    | 8<br>64  | 7<br>22 | 12<br>33   | 13<br>38 | 11<br>44     | 8<br>63 | 15<br>49 |

|                                                             | TRANSECTS |    |    |        |  |  |
|-------------------------------------------------------------|-----------|----|----|--------|--|--|
|                                                             | A         | В  | C  | D      |  |  |
| ACANTHURIDAE                                                |           |    |    |        |  |  |
|                                                             |           |    |    |        |  |  |
| Acanthurus glaucopareius                                    |           | +  | 1  | 1<br>2 |  |  |
| <u>Acanthurus lineatus</u><br><u>Acanthurus nigrofuscus</u> | 16        | 2  |    | 1      |  |  |
| Acanthurus olivaceus                                        | +         | 2  |    | *      |  |  |
| Acanthurus triostegus                                       | +         | +  | 1  | +      |  |  |
| Ctenochaetus binotatus                                      |           | 35 | 20 | 11     |  |  |
| Ctenochaetus striatus                                       |           | 37 | 65 | 45     |  |  |
| Naso lituratus                                              | 3         | +  | 10 | 2      |  |  |
| Naso tuberosus                                              |           | +  |    |        |  |  |
| Zebrasoma veliferum                                         |           | +  |    |        |  |  |
|                                                             |           |    |    |        |  |  |
| AULOSTOMIDAE                                                |           |    |    |        |  |  |
| Aulostomus chinensis                                        |           | +  |    |        |  |  |
|                                                             |           |    |    |        |  |  |
| BALISTIDAE                                                  |           |    |    |        |  |  |
| Balistapus undulatus                                        | +         | +  | +  | 1      |  |  |
| Melichthys vidua                                            | 1         | +  | +  | -      |  |  |
| Rhinecanthus rectangulus                                    | ÷         | •  | 1  | +      |  |  |
| Sufflamen bursa                                             | +         | +  | -  | 1      |  |  |
| Sufflamen chrysoptera                                       | 1         |    |    |        |  |  |
| VALIAMON VALIOODVIL                                         | -         |    |    |        |  |  |
| CARANGIDAE                                                  |           |    |    |        |  |  |
| Caranx melampygus                                           |           |    |    | +      |  |  |
| Carana morampyage                                           |           |    |    |        |  |  |
| CHAETODONTIDAE                                              |           |    |    |        |  |  |
| Chaetodon citrinellus                                       | 2         | 2  | 2  | 2      |  |  |
| Chaetodon ephippium                                         | +         | +  | +  | +      |  |  |
| Chaetodon ornatissimus                                      | +         |    |    | +      |  |  |
| Chaetodon punctatofasciatus                                 |           | +  |    |        |  |  |
| Chaetodon quadrimaculatus                                   | +         |    |    |        |  |  |
| Chaetodon trifasciatus                                      |           |    | +  | +      |  |  |
| Chaetodon ulietensis                                        | +         |    |    |        |  |  |
| Forcipiger flavissimus                                      | +         |    | +  | +      |  |  |
| Forcipiger longirostris                                     |           |    |    | +      |  |  |
| 8                                                           |           |    |    |        |  |  |

# Table 2. Fish abundance (no. per $100 \text{ m}^2$ ) on the reef front transects in the Obyan-Naftan area. Species observed in the area but not counted on the transect are marked with a +.

52

.

|                                                                                                                                 | TRANSECTS |        |                  |             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|--------|------------------|-------------|--|--|
|                                                                                                                                 | A         | В      | C                | D           |  |  |
| CIRRHIDAE                                                                                                                       |           |        |                  |             |  |  |
| Paracirrhites forsteri                                                                                                          |           | +      |                  |             |  |  |
| FISTULARIIDAE                                                                                                                   |           |        |                  |             |  |  |
| <u>Fistularia commersonii</u>                                                                                                   | +         |        |                  |             |  |  |
| GOBIIDAE                                                                                                                        |           |        |                  |             |  |  |
| <u>Ptereleotris</u> evides                                                                                                      | 30        |        |                  |             |  |  |
| LABRIDAE                                                                                                                        |           |        |                  |             |  |  |
| <u>Cheilinus celebicus</u><br><u>Cheilinus undulatus</u><br><u>Coris avgula</u><br><u>Epibulus insidiator</u>                   | +         | +      | +                | 1<br>+<br>+ |  |  |
| <u>Gomphosus varius</u><br><u>Halichoeres centiguadrus</u><br><u>Halichoeres margaritaceus</u><br><u>Halichoeres marginatus</u> |           | +<br>1 | 1                | +<br>1      |  |  |
| <u>Hemigymnus fasciatus</u><br><u>Labroides dimidiatus</u><br>Novaculichthys taeniourus                                         | 3         | +<br>+ |                  | +           |  |  |
| <u>Stethojulis bandanensis</u><br><u>Stethojulis strigiventer</u>                                                               | +         | 2      | -                | 1<br>+      |  |  |
| <u>Thalassoma fuscum</u><br><u>Thalassoma lutescens</u><br><u>Thalassoma quinquevittatum</u><br>juveniles                       | 1<br>9    | 4<br>8 | 2<br>+<br>7<br>3 | 8<br>2      |  |  |
| LETHRINIDAE                                                                                                                     |           |        |                  |             |  |  |
| Monotaxis grandoculis                                                                                                           |           |        |                  | +           |  |  |
| LUTJANIDAE                                                                                                                      |           |        |                  |             |  |  |
| Aphareus furcatus                                                                                                               | +         |        |                  |             |  |  |

|                                                              | TRANSECTS |    |              |    |  |
|--------------------------------------------------------------|-----------|----|--------------|----|--|
| · ·                                                          | A         | В  | C            | D  |  |
| MULLIDAE                                                     |           |    |              |    |  |
| Parupeneus bifasciatus                                       | 1         | 1  | +            |    |  |
| Parupeneus chryseredros                                      |           |    | 1            |    |  |
| <u>Parupeneus</u> trifasciatus                               | +         | 1  | 1            | 1  |  |
| POMACANTHIDAE                                                |           |    |              |    |  |
| <u>Centropyge</u> <u>flavissimus</u>                         | +         | 1  | +            | 1  |  |
| POMACENTRIDAE                                                |           |    |              |    |  |
| Abudefduf vaigiensis                                         |           | +  |              | +  |  |
| Chrysiptera leucopoma                                        | 56        | 5  | 12           | 4  |  |
| Dascyllus reticulatus                                        | +         | 3  | 2            |    |  |
| Plectroglyphidodon dickii                                    | •         | +  | 1            |    |  |
| Plectroglyphidodon imparipennis                              | 2         |    | 2 <b>1</b> . | 1  |  |
| Pomacentrus vaiuli                                           | 62        |    | 1            |    |  |
| <u>Pomachromis guamensis</u><br><u>Stegastes fasciolatus</u> | 02        | 7  | -            |    |  |
| Stegastes nigricans                                          |           |    | 2            |    |  |
| SCARIDAE                                                     |           |    |              |    |  |
| Scarus harid                                                 | +         |    | 2            | 2  |  |
| Scarus psittacus                                             | +         | +  |              | +  |  |
| Scarus schlegeli                                             |           |    |              | +  |  |
| Scarus sordidus                                              | +         | 22 | 19           | 36 |  |
| juveniles                                                    | 4         | 2  |              |    |  |
| SERRANIDAE                                                   |           |    |              |    |  |
| Cephalopholis urodelus                                       |           |    | +            |    |  |
| SIGANIDAE                                                    |           |    |              |    |  |
| Siganus argenteus                                            | +         | +  |              |    |  |

|                                                                   | TRANSECTS |     |     |     |  |
|-------------------------------------------------------------------|-----------|-----|-----|-----|--|
|                                                                   | A         | B   | C   | D   |  |
| ZANCLIDAE                                                         |           |     |     |     |  |
| Zanclus cornutus                                                  |           | +   | 2   | 3   |  |
| Total No. of Species                                              | 35        | 37  | 31  | 39  |  |
| Total Fish Abundance on Transect<br>(no. per 100 m <sup>2</sup> ) | 191       | 133 | 156 | 129 |  |

55

#### Acknowledgements

The authors are grateful for financial support received from the Coastal Resources Management (CRM) Office, Saipan, Commonwealth of the Northern Mariana Islands. The Acting Director of CRM, Mr. Robert W. Rudolph, and members of his staff were particularly helpful during our period of fieldwork.

We want to thank Ms. Marie B. Peredo, our Secretary, for typing the draft manuscripts of six different authors and for her help along with Ms. Angela F. Duenas for their help in solving the many problems that arise whenever a project, such as ours, involves so many members and arrangements between several governments.